[1] |
侯召猛, 苏少亭, 陈龙豪, 等. 青少年特发性脊柱侧凸研究热点及趋势的可视化分析[J]. 中国组织工程研究, 2024, 28(21):3424-3430.
|
[2] |
Aulia TN, Djufri D, Gatam L, et al. Etiopathogenesis of adolescent idiopathic scoliosis (AIS): Role of genetic and environmental factors[J]. Narra J, 2023, 3(3):e217-e217.
|
[3] |
Kuznia AL, Hernandez AK, Lee LU. Adolescent idiopathic scoliosis: Common questions and answers[J]. Am Fam Physician, 2020, 101(1):19-23.
pmid: 31894928
|
[4] |
Burner WL 3rd, Badger VM, Sherman FC. Osteoporosis and acquired back deformities[J]. J Pediatr Orthop, 1982, 2(4):383-385.
|
[5] |
Shiran SI, Shabtai L, Ben-Sira L, et al. T1-weighted MR imaging of bone marrow pattern in children with adolescent idiopathic scoliosis: A preliminary study[J]. J Child Orthop, 2018, 12(2):181-186.
doi: 10.1302/1863-2548.12.180035
pmid: 29707058
|
[6] |
Scherrer SA, Begon M, Leardini A, et al. Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis[J]. PLoS One, 2018, 8(8):e71504- e71504.
|
[7] |
张苡齐, 周立金, 张扬璞, 等. 基于脊柱CT三维重建测量的主弯椎体楔形变程度与特发性脊柱侧凸严重程度的相关性分析[J]. 中国骨与关节杂志, 2025, 14(1):4-9.
|
[8] |
Vergari C, Karam M, Pietton R, et al. Spine slenderness and wedging in adolescent idiopathic scoliosis and in asymptomatic population: An observational retrospective study[J]. Eur Spine J, 2020, 29(4):726-736.
doi: 10.1007/s00586-020-06340-8
pmid: 32072270
|
[9] |
Brink RC, Schlösser TPC, van Stralen M, et al. Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis-a 3D CT study[J]. Spine J, 2018, 18(12):2259-2265.
doi: S1529-9430(18)30204-3
pmid: 29730457
|
[10] |
Zhang H, Ye X, Wu H, et al. Relative anterior spinal overgrowth in mild and moderate adolescent idiopathic scoliosis: A retrospective study[J]. Sci Rep, 2025, 15(1):2651-2651.
|
[11] |
Duncombe P, Izatt MT, Pivonka P, et al. Quantifying muscle size asymmetry in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging[J]. Spine, 2023, 48(24):1717-1725.
doi: 10.1097/BRS.0000000000004715
pmid: 37432908
|
[12] |
Ye H, Xu Y, Mi R, et al. Evaluation of paravertebral muscle structure asymmetry in idiopathic scoliosis using imaging techniques[J]. World Neurosurg, 2024, 191:e547-e555.
|
[13] |
Yeung KH, Man GCW, Shi L, et al. Magnetic resonance imaging-based morphological change of paraspinal muscles in girls with adolescent idiopathic scoliosis[J]. Spine, 2019, 44(19):1356-1363.
doi: 10.1097/BRS.0000000000003078
pmid: 31022152
|
[14] |
Shao X, Chen J, Yang J, et al. Fiber type-specific morphological and cellular changes of paraspinal muscles in patients with severe adolescent idiopathic scoliosis[J]. Med Sci Monit, 2020, 26: e924415.
|
[15] |
Janusz P, Tokłowicz M, Andrusiewicz M, et al. Association of LBX1 gene methylation level with disease severity in patients with idiopathic scoliosis: Study on deep paravertebral muscles[J]. Genes (Basel), 2022, 13(9):1556-1556.
|
[16] |
Xin H, Sui W, Mao W, et al. Distinct clinical characteristics of adolescent idiopathic scoliosis with asymmetrical ESR1 expression in paraspinal muscle progenitor cells[J]. JOR spine, 2024, 7(4):e70018.
|
[17] |
Shi L, Wang D, Hui CS, et al. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls[J]. Spine J, 2013, 13(12):1904-1911.
doi: 10.1016/j.spinee.2013.06.045
pmid: 23988458
|
[18] |
Batin S, Payas A, Bal E, et al. Evaluation of cerebellum volume and trunk oscillation velocity in cases with adolescent idiopathic scoliosis: A preliminary report[J]. Eur Spine J, 2023, 32(11):4012-4019.
doi: 10.1007/s00586-023-07948-2
pmid: 37725163
|
[19] |
Chu WC, Man GC, Lam WW, et al. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis[J]. Spine, 2007, 32(15):1667-674.
pmid: 17621216
|
[20] |
Chau WW, Chu WC, Lam TP, et al. Anatomical origin of abnormal somatosensory-evoked potential (SEP) in adolescent idiopathic scoliosis with different curve severity and correlation with cerebellar tonsillar level determined by MRI[J]. Spine, 2016, 41(10):E598-604.
|
[21] |
Zhang W, Sha S, Xu L, et al. The prevalence of intraspinal anomalies in infantile and juvenile patients with “presumed idiopathic” scoliosis: A MRI-based analysis of 504 patients.[J]. BMC Musculoskelet Disord, 2016, 17(1):189.
|
[22] |
Deng M, Hui SC, Yu FW, et al. MRI-based morphological evidence of spinal cord tethering predicts curve progression in adolescent idiopathic scoliosis[J]. Spine J, 2015, 15(6):1391-1401.
doi: 10.1016/j.spinee.2015.02.033
pmid: 25725365
|
[23] |
Miyazaki M, Ishihara T, Abe T, et al. The position of the spinal cord relative to the vertebrae in adolescent idiopathic scoliosis[J]. Medicine (Baltimore), 2019, 98(47):e18057.
|
[24] |
Tingsheng L, Chunshan L, Shudan Y, et al. Validation of artificial intelligence in the classification of adolescent idiopathic scoliosis and the compairment to clinical manual handling[J]. Orthop Surg, 2024, 16(8):2040-2051.
|
[25] |
Ohyama S, Maki S, Kotani T, et al. Machine learning algorithms for predicting future curve using first and second visit data in female adolescent idiopathic scoliosis patients[J]. Eur Spine J, 2025 Feb 4.Epub ahead of print.
|
[26] |
Chui ESC, He Z, Lam PT, et al. Deep learning-based prediction model for the cobb angle in adolescent idiopathic scoliosis patients[J]. Diagnostics (Basel), 2024, 14(12):1263-1263.
|