Clinical Focus ›› 2025, Vol. 40 ›› Issue (6): 553-557.doi: 10.3969/j.issn.1004-583X.2025.06.013
Previous Articles Next Articles
Received:
2025-03-24
Online:
2025-06-20
Published:
2025-07-01
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.06.013
[1] | Song Z, Jia G, Luo G, et al. Global research trends of Mycoplasma pneumoniae pneumonia in children: A bibliometric analysis[J]. Front Pediatr, 2023, 11:1306234. |
[2] | You J, Zhang L, Chen W, et al. Epidemiological characteristics of Mycoplasma pneumoniae in hospitalized children before, during, and after COVID-19 pandemic restrictions in Chongqing, China[J]. Front Cell Infect Microbiol, 2024, 14:1424554. |
[3] | Chen YH, Wu KH, Wu HP. Unraveling the complexities of Toll-like receptors: From molecular mechanisms to clinical applications[J]. Int J Mol Sci, 2024, 25(9):5037. |
[4] | Naghib M, Hatam-Jahromi M, Niktab M, et al. Mycoplasma pneumoniae and Toll-like receptors: A mutual avenue[J]. Allergol Immunopathol (Madr), 2018, 46(5):508-513. |
[5] |
Lyu M, Fan G, Xiao G, et al. Traditional Chinese medicine in COVID-19[J]. Acta Pharmaceutica Sinica B, 2021, 11(11):3337-3363.
doi: 10.1016/j.apsb.2021.09.008 pmid: 34567957 |
[6] | Nimma S, Gu W, Manik MK, et al. Crystal structure of the Toll/interleukin‐1 receptor(TIR)domain of IL‐1R10 provides structural insights into TIR domain signalling[J]. FEBS Lett, 2022, 596(7):886-897. |
[7] | Ghosh SK, Saha B, Banerjee R. Insight into the sequence-structure relationship of TLR cytoplasm’s Toll/Interleukin-1 receptor domain towards understanding the conserved functionality of TLR 2 heterodimer in mammals[J]. J Biomol Struct Dyn, 2021, 39(15):5348-5357. |
[8] |
O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling[J]. Nat Rev Immunol, 2007, 7(5):353-364.
doi: 10.1038/nri2079 pmid: 17457343 |
[9] | Kircheis R, Planz O. Special issue “the role of Toll-like receptors(TLRs) in infection and inflammation 2.0”[J]. Int J Mol Sci, 2024, 25(17):9709. |
[10] |
Richard K, Perkins DJ, Harberts EM, et al. Dissociation of TRIF bias and adjuvanticity[J]. Vaccine, 2020, 38(27): 4298-4308.
doi: S0264-410X(20)30536-3 pmid: 32389496 |
[11] | Tamiya S, Yoshikawa E, Ogura M, et al. Neutrophil-mediated lung injury both via TLR2-dependent production of IL-1α and IL-12 p40, and TLR2-independent CARDS toxin after Mycoplasma pneumoniae infection in mice[J]. Microbiol Spectr, 2021, 9(3):e0158821. |
[12] | Chen M, Deng H, Zhao Y, et al. Toll-like receptor 2 modulates pulmonary inflammation and TNF-α release mediated by Mycoplasma pneumoniae[J]. Front Cell Infect Microbiol, 2022, 12:824027. |
[13] | Shao L, Cong Z, Li X, et al. Changes in levels of IL-9, IL-17, IFN-γ, dendritic cell numbers and TLR expression in peripheral blood in asthmatic children with Mycoplasma pneumoniae infection[J]. Int J Clin Exp Pathol, 2015, 8(5):5263-5672. |
[14] | Pan X, Guo X, Shi J. Design of a novel multiepitope vaccine with CTLA-4 extracellular domain against Mycoplasma pneumoniae: A vaccine-immunoinformatics approach[J]. Vaccine, 2024, 42(18):3883-3898. |
[15] |
Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors[J]. Curr Mol Med, 2003, 3(8):759-771.
pmid: 14682496 |
[16] | Wang S, Jin X, Chen H, et al. Quercetin alleviates Mycoplasma gallisepticum-induced inflammatory damage and oxidative stress through inhibition of TLR2/MyD88/NF-κB pathway in vivo and in vitro[J]. Microb Pathog, 2023, 176:106006. |
[17] | Ding N, Lei A, Shi Z, et al. Total flavonoids from Camellia oleifera alleviated Mycoplasma pneumoniae-induced lung injury via inhibition of the TLR2-mediated NF-κB and MAPK pathways[J]. Molecules, 2023, 28(20):7077. |
[18] |
Liu X, Peng X, Lin Z. Evodiamine enhanced the anti-inflammation effect of clindamycin in the BEAS-2B cells infected with H5N1 and pneumoniae D39 through CREB-C/EBPβ signaling pathway[J]. Viral Immunol, 2021, 34(6):410-415.
doi: 10.1089/vim.2020.0319 pmid: 33945347 |
[19] |
Hou C, Chen L, Yang L, et al. An insight into anti-inflammatory effects of natural polysaccharides[J]. Int J Biol Macromol, 2020, 153:248-255.
doi: S0141-8130(20)31114-4 pmid: 32114173 |
[20] | Bo R, Liu X, Wang J, et al. Polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles:Characterization, immunological effect and mechanism[J]. Front Nutr, 2022, 9:992502. |
[21] | Zhang F, Liu M, Wang Y, et al. Bailixiang tea, an herbal medicine formula, co-suppresses TLR2/MAPK8 and TLR2/NF-κB signaling pathways to protect against LPS-triggered cytokine storm in mice[J]. J Ethnopharmacol, 2025, 337(Pt 1):118791. |
[22] | 符顺丹, 符青, 马艳艳. 苈白泄肺平喘汤联合西医治疗痰热闭肺型小儿肺炎支原体肺炎致喘嗽的临床疗效及对TLR2、TLR4水平的影响[J]. 四川中医, 2023, 41(3):65-68. |
[23] | Hou JY, Wu JR, Chen YB, et al. Systematic identification of the interventional mechanism of Qingfei Xiaoyan Wan(QFXYW)in treatment of the cytokine storm in acute lung injury using transcriptomics-based system pharmacological analyses[J]. Pharm Biol, 2022, 60(1):743-754. |
[24] | 刘金, 闫虹, 陈小庚, 等. 槐杞黄颗粒对重型肺炎支原体肺炎患儿免疫功能的影响[J]. 中国当代儿科杂志, 2017, 19(7):759-762. |
[25] | Karki P, Birukov KG. Oxidized phospholipids in control of endothelial barrier function: Mechanisms and implication in lung injury[J]. Front Endocrinol (Lausanne), 2021, 12:794437. |
[26] | Grabowski M, Murgueitio MS, Bermudez M, et al. The novel small-molecule antagonist MMG-11 preferentially inhibits TLR2/1 signaling[J]. Biochem Pharmacol, 2020, 171:113687. |
[27] | Roome T, Aziz S, Razzak A, et al. Opuntioside, opuntiol and its metallic nanoparticles attenuate adjuvant-induced arthritis: Novel suppressors of toll-like receptors-2 and-4[J]. Biomed Pharmacother, 2019, 112:108624. |
[28] | Parada E, Casas AI, Palomino-Antolin A, et al. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models[J]. Br J Pharmacol, 2019, 176(15):2764-2779. |
[29] | Del Santos N, Vázquez-Ramírez R, Mendes E, et al. Impact of mygalin on inflammatory response induced by toll-like receptor 2 agonists and IFN-γ activation[J]. Int J Mol Sci, 2024, 25(19):10555. |
[30] | Zhu Y, Wei L, Zwygart AC, et al. A synthetic multivalent lipopeptide derived from Pam3CSK4 with irreversible influenza inhibition and immuno-stimulating effects[J]. Small, 2024, 20(31):e2307709. |
[31] | Hu DN, Zhang R, Iacob CE, et al. Toll-like receptor 2 and 6 agonist fibroblast-stimulating lipopeptide increases expression and secretion of CXCL1 and CXCL2 by uveal melanocytes[J]. Exp Eye Res, 2022, 216:108943. |
[32] | Rainer H, Goretzki A, Lin Y J, et al. Characterization of the immune-modulating properties of different β-glucans on myeloid dendritic cells[J]. Int J Mol Sci, 2024, 25(18):9914. |
[33] | Jia H, Luo Z, Jing R, et al. The development of a highly potent and selective human Toll-like receptor 2 agonist: Synthesis and biological evaluation of CaLGL-1 and its derivatives[J]. J Med Chem, 2024, 67(15):12932-12944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||