Clinical Focus ›› 2025, Vol. 40 ›› Issue (9): 844-849.doi: 10.3969/j.issn.1004-583X.2025.09.012
Previous Articles Next Articles
Received:2025-05-21
Online:2025-09-20
Published:2025-09-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.09.012
| [1] | Tang C, Cai J, Yin XM, et al. Mitochondrial quality control in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17(5): 299-318.doi: 10.1038/s41581-020-00369-0. |
| [2] | Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1): 32.doi: 10.1186/s40779-024-00536-5. |
| [3] | Williams R, Karuranga S, Malanda B, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2020, 162: 108072.doi: 10.1016/j.diabres.2020.108072. |
| [4] | Dai W, Lu H, Chen Y, et al. The loss of mitochondrial quality control in diabetic kidney disease[J]. Front Cell Dev Biol, 2021, 9: 706832.doi: 10.3389/fcell.2021.706832. |
| [5] | Thuy Linh H, Nakade Y, Wada T, et al. The potential mechanism of D-amino acids-mitochondria axis in the progression of diabetic kidney disease[J]. Kidney Int Rep, 2025, 10(2): 343-354.doi: 10.1016/j.ekir.2024.11.008. |
| [6] | Li L, Zhang Y, Chen Z, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury[J]. Heliyon, 2023, 9(11): e21695.doi: 10.1016/j.heliyon.2023.e21695.eCollection 2023 Nov. |
| [7] | Lv S, Zhang G, Lu Y, et al. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control[J]. Phytomedicine, 2024, 129: 155669.doi: 10.1016/j.phymed.2024.155669. |
| [8] | Huang C, Deng K, Wu M. Mitochondrial cristae in health and disease[J]. Int J Biol Macromol, 2023, 235: 123755.doi: 10.1016/j.ijbiomac.2023.123755. |
| [9] |
Zhan M, Brooks C, Liu F, et al. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology[J]. Kidney Int, 2013, 83(4): 568-581.doi: 10.1038/ki.2012.441.
pmid: 23325082 |
| [10] | von der Malsburg A, Sapp GM, Zuccaro KE, et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature, 2023, 620(7976): 1101-1108.doi: 10.1038/s41586-023-06441-6. |
| [11] | Han X, Wang J, Li R, et al. Placental mesenchymal stem cells alleviate podocyte injury in diabetic kidney disease by modulating mitophagy via the SIRT1-PGC-1alpha-TFAM pathway[J]. Int J Mol Sci, 2023, 24(5): 4696.doi: 10.3390/ijms24054696. |
| [12] | Picca A, Calvani R, Coelho-Junior HJ, et al. Cell death and inflammation: The role of mitochondria in health and disease[J]. Cells, 2021, 10(3): 537.doi: 10.3390/cells10030537. |
| [13] | Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome[J]. Nat Rev Mol Cell Biol, 2021, 22(1): 54-70.doi: 10.1038/s41580-020-00300-2. |
| [14] |
Hammerling BC, Gustafsson AB. Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy[J]. J Mol Cell Cardiol, 2014, 75: 122-130.doi: 10.1016/j.yjmcc.2014.07.013.
pmid: 25086292 |
| [15] | Muller L, Hoppe T. UPS-dependent strategies of protein quality control degradation[J]. Trends Biochem Sci, 2024, 49(10): 859-874.doi: 10.1016/j.tibs.2024.06.006. |
| [16] | Sutandy FXR, Gossner I, Tascher G, et al. A cytosolic surveillance mechanism activates the mitochondrial UPR[J]. Nature, 2023, 618(7966): 849-854.doi: 10.1038/s41586-023-06142-0. |
| [17] | Tao H, Zhu P, Xia W, et al. The emerging role of the mitochondrial respiratory chain in skeletal aging[J]. Aging Dis, 2024, 15(4): 1784-1812.doi: 10.14336/AD.2023.0924. |
| [18] | An Y, Xu BT, Wan SR, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction[J]. Cardiovasc Diabetol, 2023, 22(1): 237.doi: 10.1186/s12933-023-01965-7. |
| [19] | Chen Y, Kanwar YS, Chen X, et al. Aging and diabetic kidney disease: Emerging pathogenetic mechanisms and clinical implications[J]. Curr Med Chem, 2024, 31(6): 697-725.doi: 10.2174/0929867330666230621112215. |
| [20] | Baek J, Lee YH, Jeong HY, et al. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease[J]. Kidney Res Clin Pract, 2023, 42(5): 546-560.doi: 10.23876/j.krcp.22.233. |
| [21] |
Zhan M, Usman IM, Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.doi: 10.1681/ASN.2014050457.
pmid: 25270067 |
| [22] | Shen H, Ming Y, Xu C, et al. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy[J]. J Cell Physiol, 2019, 234(9): 15123-15133.doi: 10.1002/jcp.28153. |
| [23] | Yuan S, Liu X, Zhu X, et al. The role of TLR4 on PGC-1α-mediated oxidative stress in tubular cell in diabetic kidney disease[J]. Oxid Med Cell Longev, 2018, 2018: 6296802.doi: 10.1155/2018/6296802. |
| [24] | Yu Y, Jia YY, Li HJ. Sodium butyrate improves mitochondrial function and kidney tissue injury in diabetic kidney disease via the AMPK/PGC-1α pathway[J]. Ren Fail, 2023, 45(2): 2287129.doi: 10.1080/0886022X.2023.2287129. |
| [25] | Zeng Y, Guo M, Wu Q, et al. Gut microbiota-derived indole-3-propionic acid alleviates diabetic kidney disease through its mitochondrial protective effect via reducing ubiquitination mediated-degradation of SIRT1[J]. J Adv Res, 2025, 73:607-630. doi: 10.1016/j.jare.2024.08.018. |
| [26] | Zhou D, Zhou M, Wang Z, et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy[J]. Cell Death Dis, 2019, 10(7): 524.doi: 10.1038/s41419-019-1754-3. |
| [27] | Wang Y, Xu Y, Wang Q, et al. Sulforaphane ameliorated podocyte injury according to regulation of the Nrf2/PINK1 pathway for mitophagy in diabetic kidney disease[J]. Eur J Pharmacol, 2023, 958: 176042.doi: 10.1016/j.ejphar.2023.176042. |
| [28] | Deng Q, Wen R, Liu S, et al. Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission[J]. Cell Death Dis, 2020, 11(9): 814.doi: 10.1038/s41419-020-03022-7. |
| [29] |
Ayanga BA, Badal SS, Wang Y, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy[J]. J Am Soc Nephrol, 2016, 27(9): 2733-2747.doi: 10.1681/ASN.2015101096.
pmid: 26825530 |
| [30] | Hao Y, Fan Y, Feng J, et al. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease[J]. Cell Commun Signal, 2024, 22(1): 26.doi: 10.1186/s12964-023-01399-4. |
| [31] | Cao Y, Chen Z, Hu J, et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J]. Front Cell Dev Biol, 2021, 9: 769213.doi: 10.3389/fcell.2021.769213. |
| [32] | Krishnan S, Manoharan J, Wang H, et al. CD248 induces a maladaptive unfolded protein response in diabetic kidney disease[J]. Kidney Int, 2023, 103(2): 304-319.doi: 10.1016/j.kint.2022.09.024. |
| [33] | Gong W, Song J, Liang J, et al. Reduced Lon protease 1 expression in podocytes contributes to the pathogenesis of podocytopathy[J]. Kidney Int, 2021, 99(4): 854-869.doi: 10.1016/j.kint.2020.10.025. |
| [34] | Yang T, Peng Y, Shao Y, et al. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling[J]. Phytomedicine, 2025, 138: 156411.doi: 10.1016/j.phymed.2025.156411. |
| [35] | Jeong HY, Kang JM, Jun HH, et al. Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy[J]. Sci Rep, 2018, 8(1): 8774.doi: 10.1038/s41598-018-26858-8. |
| [36] | Ding XQ, Jian TY, Gai YN, et al. Chicoric acid attenuated renal tubular injury in HFD-induced chronic kidney disease mice through the promotion of mitophagy via the Nrf2/PINK/Parkin pathway[J]. J Agric Food Chem, 2022, 70(9): 2923-2935.doi: 10.1021/acs.jafc.1c07795. Epub 2022 Feb 23. |
| [37] | Cleveland KH, Schnellmann RG. The β2-adrenergic receptor agonist formoterol restores mitochondrial homeostasis in glucose-induced renal proximal tubule injury through separate integrated pathways[J]. Biochem Pharmacol, 2023, 209: 115436.doi: 10.1016/j.bcp.2023.115436.Epub 2023 Jan 30. |
| [38] | Liu X, Xu C, Xu L, et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway[J]. Metabolism, 2020, 111: 154334.doi: 10.1016/j.metabol.2020.154334.Epub 2020 Aug 7. |
| [39] | Song Y, Yu H, Sun Q, et al. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease[J]. Front Pharmacol, 2022, 13: 1035755.doi: 10.3389/fphar.2022.1035755.eCollection 2022. |
| [40] | Jian Y, Yang Y, Cheng L, et al. Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1[J]. Cell Prolif, 2023, 56(2): e13362.doi: 10.1111/cpr.13362.Epub 2022 Nov 26. |
| [41] | Liu Y, Zhang L, Zhang S, et al. ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response[J]. Mol Med, 2023, 29(1): 57.doi: 10.1186/s10020-023-00651-4. |
| [42] | Wang X, Song M, Li X, et al. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease[J]. Am J Physiol Cell Physiol, 2023, 325(2): C538-C549.doi: 10.1152/ajpcell.00144.2023.Epub 2023 Jul 17. |
| [43] | Chen H, Zhang H, Li AM, et al. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats[J]. Redox Biol, 2024, 70: 103062.doi: 10.1016/j.redox.2024.103062.Epub 2024 Jan 26. |
| [44] |
Wang Y, Song D, Tang L. Mitophagy, inflammasomes and their interaction in kidney diseases: A comprehensive review of experimental studies[J]. J Inflamm Res, 2023, 16: 1457-1469.doi: 10.2147/JIR.S402290.eCollection 2023.
pmid: 37042016 |
| [45] |
Chen K, Feng L, Hu W, et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy[J]. FASEB J, 2019, 33(3): 4571-4585.doi: 10.1096/fj.201801749RRR.Epub 2018 Dec 20.
pmid: 30571313 |
| [46] |
Bonventre JV. Can we target tubular damage to prevent renal function decline in diabetes?[J]. Semin Nephrol, 2012, 32(5): 452-462.doi: 10.1016/j.semnephrol.2012.07.008.
pmid: 23062986 |
| [47] | Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules[J]. Cell Death Dis, 2023, 14(7): 448.doi: 10.1038/s41419-023-05988-6. |
| [48] | Liu H, Zhen C, Xie J, et al. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA[J]. Nat Cell Biol, 2024, 26(6): 878-891.doi:doi: 10.1038/s41556-024-01419-6.Epub 2024 May 23. |
| [49] | Yao L, Liang X, Liu Y, et al. Non-steroidal mineralocorticoid receptor antagonist finerenone ameliorates mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in diabetic tubulopathy[J]. Redox Biol, 2023, 68: 102946.doi: 10.1016/j.redox.2023.102946.Epub 2023 Oct 24. |
| [50] |
Xiao L, Xu X, Zhang F, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1[J]. Redox Biol, 2017, 11: 297-311.doi: 10.1016/j.redox.2016.12.022.Epub 2016 Dec 21.
pmid: 28033563 |
| [1] | . [J]. Clinical Focus, 2025, 40(1): 76-81. |
| [2] | Li Jiawen, Liu Yanlan, Li Yaoshuang, Qiu Huina, Li Fang, Wu Fan, Lin Chenying, Lin Jingna. Association of TyG index and its derivatives with the risk of diabetic kidney disease in patients with type 2 diabetes mellitus [J]. Clinical Focus, 2024, 39(10): 901-908. |
| [3] | . [J]. Clinical Focus, 2024, 39(9): 842-846. |
| [4] | Yan Tianmei, Wu Yanan, Liu Yueying, Wei Limin. Correlation of triglyceride-glucose index combined with obesity indicators with diabetic retinopathy [J]. Clinical Focus, 2024, 39(7): 612-619. |
| [5] | Wang Chunjie, Xie Jing, Han Xue, Wu Dan, Chen Jianhua. Effect of individualized hemodialysis on dialysis complications in elderly patients with diabetic nephropathy [J]. Clinical Focus, 2024, 39(4): 332-336. |
| [6] | Zhang Xinxin, Liu Guoqing, Wang Beibei. Extreme thrombocytosis caused by diabetic ketoacidosis: A case report and literature review [J]. Clinical Focus, 2023, 38(8): 719-721. |
| [7] | . [J]. Clinical Focus, 2023, 38(6): 564-568. |
| [8] | . [J]. Clinical Focus, 2023, 38(6): 569-572. |
| [9] | . [J]. Clinical Focus, 2023, 38(4): 364-368. |
| [10] | Li Huifang, Miao Xia. Prediction of thyroid hormone level on risk of type 2 diabetes nephropathy [J]. Clinical Focus, 2023, 38(2): 137-142. |
| [11] | Ju Yan, Guo Peng, Wu Botao, Liu Xinyu. Correlation between ratio of salivary uric acid to blood uric acid and diabetic peripheral neuropathy [J]. Clinical Focus, 2023, 38(1): 37-41. |
| [12] | He Feng, Nin Lu, Luo Gao, Yang Ruifei, Li Fanfan, Cheng Xiaoqiong, An Binbin, Li Jingjuan, Liu Yuanyuan, Guo Qian, Wang Jinyang. Correlation of Chinese visceral adipose index and visceral fat area with diabetic nephropathy and their warning values [J]. Clinical Focus, 2022, 37(12): 1089-1093. |
| [13] | . [J]. Clinical Focus, 2022, 37(12): 1148-1152. |
| [14] | Yao Yao, Chu Min. Relationship between serum amyloid β-protein and cognitive dysfunction in patients with diabetic kidney disease [J]. Clinical Focus, 2022, 37(9): 813-816. |
| [15] | . [J]. Clinical Focus, 2022, 37(5): 467-471. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||