Clinical Focus ›› 2025, Vol. 40 ›› Issue (11): 988-998.doi: 10.3969/j.issn.1004-583X.2025.11.004
Previous Articles Next Articles
Wang Zhuangzhuang1, Yang Qingjun1, Ren Huan2, Liu Yanting3, Tian Chunlei3(
)
Received:2025-09-23
Online:2025-11-20
Published:2025-12-02
Contact:
Tian Chunlei
E-mail:cltianyc@163.com
CLC Number:
Wang Zhuangzhuang, Yang Qingjun, Ren Huan, Liu Yanting, Tian Chunlei. Development and validation of a machine learning-based prognostic model for H3K27 mmutant diffuse midline glioma[J]. Clinical Focus, 2025, 40(11): 988-998.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.11.004
| 项目 | 训练集( | 验证集( | χ2/ | |
|---|---|---|---|---|
| 年龄(岁) | ||||
| <30 | 58(59.8) | 24(58.5) | ||
| 30~60 | 33(34.0) | 12(29.3) | 0.980 | 0.613 |
| >60 | 6(6.2) | 5(12.2) | ||
| 性别[例(%)] | ||||
| 女性 男性 | 52(53.6) 45(46.4) | 19(46.3) 22(53.7) | 0.620 | 0.431 |
| 种族[例(%)] | ||||
| 黑种人 | 7(7.2) | 3(7.3) | ||
| 白种人 | 83(85.6) | 33(80.5) | 0.720 | 0.698 |
| 黄种人 | 7(7.2) | 5(12.2) | ||
| 肿瘤侧别[例(%)] | ||||
| 左侧 | 8(8.2) | 5(12.2) | ||
| 右侧 | 12(12.4) | 8(19.5) | 1.850 | 0.396 |
| 中线结构 | 77(79.4) | 28(68.3) | ||
| 肿瘤分期[例(%)] | ||||
| 局部浸润 | 74(76.30) | 28(68.30) | ||
| 临近侵袭 | 12(12.40) | 5(12.20) | 1.930 | 0.381 |
| 远处转移 | 11(11.30) | 8(19.50) | ||
| 放疗[例(%)] | ||||
| 否 是 | 16(16.5) 81(83.5) | 8(19.5) 33(80.5) | 0.180 | 0.674 |
| 化疗[例(%)] | ||||
| 否 是 | 43(44.3) 54(55.7) | 16(39.0) 25(61.0) | 0.350 | 0.554 |
| WHO分级[例(%)] | ||||
| 低(Ⅰ-Ⅱ) 高(Ⅲ-Ⅳ) | 73(75.3) 24(24.7) | 28(68.3) 13(31.7) | 0.750 | 0.387 |
| 肿瘤数量[例(%)] | ||||
| 单发 多发 | 1(1.0) 96(99.0) | 0 41(100.0) | - | 1.000 |
| 肿瘤体积(cm3) | 41(33, 48) | 42(30, 50) | -0.120 | 0.903 |
Tab.1 Comparison of baseline characteristics between the two groups
| 项目 | 训练集( | 验证集( | χ2/ | |
|---|---|---|---|---|
| 年龄(岁) | ||||
| <30 | 58(59.8) | 24(58.5) | ||
| 30~60 | 33(34.0) | 12(29.3) | 0.980 | 0.613 |
| >60 | 6(6.2) | 5(12.2) | ||
| 性别[例(%)] | ||||
| 女性 男性 | 52(53.6) 45(46.4) | 19(46.3) 22(53.7) | 0.620 | 0.431 |
| 种族[例(%)] | ||||
| 黑种人 | 7(7.2) | 3(7.3) | ||
| 白种人 | 83(85.6) | 33(80.5) | 0.720 | 0.698 |
| 黄种人 | 7(7.2) | 5(12.2) | ||
| 肿瘤侧别[例(%)] | ||||
| 左侧 | 8(8.2) | 5(12.2) | ||
| 右侧 | 12(12.4) | 8(19.5) | 1.850 | 0.396 |
| 中线结构 | 77(79.4) | 28(68.3) | ||
| 肿瘤分期[例(%)] | ||||
| 局部浸润 | 74(76.30) | 28(68.30) | ||
| 临近侵袭 | 12(12.40) | 5(12.20) | 1.930 | 0.381 |
| 远处转移 | 11(11.30) | 8(19.50) | ||
| 放疗[例(%)] | ||||
| 否 是 | 16(16.5) 81(83.5) | 8(19.5) 33(80.5) | 0.180 | 0.674 |
| 化疗[例(%)] | ||||
| 否 是 | 43(44.3) 54(55.7) | 16(39.0) 25(61.0) | 0.350 | 0.554 |
| WHO分级[例(%)] | ||||
| 低(Ⅰ-Ⅱ) 高(Ⅲ-Ⅳ) | 73(75.3) 24(24.7) | 28(68.3) 13(31.7) | 0.750 | 0.387 |
| 肿瘤数量[例(%)] | ||||
| 单发 多发 | 1(1.0) 96(99.0) | 0 41(100.0) | - | 1.000 |
| 肿瘤体积(cm3) | 41(33, 48) | 42(30, 50) | -0.120 | 0.903 |
Fig.2 Prognostic variables for H3K27M mutant DMG patients screened using four machine learning algorithms a. The importance score of prognostic variables identified by XGBoost model; b. The importance score of the prognostic variables identified by the RF model; c. The importance score of the prognostic impact variables identified by the Lasso regression model; d. The importance score of prognostic variables identified by the DT model
| 模型 | 分类 | AUC(95% | Brier值 | 灵敏度 | 特异度 | 阳性预测值 | 阴性预测值 | 平衡准确性 |
|---|---|---|---|---|---|---|---|---|
| 训练集 | Lasso | 0.82(0.76~0.87) | 0.150 | 0.780 | 0.840 | 0.810 | 0.820 | 0.810 |
| XGBoost | 0.91(0.87~0.94) | 0.110 | 0.870 | 0.820 | 0.840 | 0.860 | 0.850 | |
| RF | 0.95(0.92~0.97) | 0.080 | 0.910 | 0.880 | 0.890 | 0.900 | 0.900 | |
| DT | 0.88(0.83~0.92) | 0.130 | 0.830 | 0.800 | 0.820 | 0.810 | 0.820 | |
| 验证集 | Lasso | 0.76(0.68~0.83) | 0.180 | 0.720 | 0.790 | 0.750 | 0.760 | 0.760 |
| XGBoost | 0.80(0.73~0.86) | 0.160 | 0.760 | 0.810 | 0.780 | 0.790 | 0.790 | |
| RF | 0.78(0.70~0.85) | 0.170 | 0.740 | 0.770 | 0.760 | 0.750 | 0.760 | |
| DT | 0.72(0.64~0.79) | 0.190 | 0.680 | 0.740 | 0.710 | 0.710 | 0.710 |
Tab.2 Accuracy evaluation of different algorithm models in training set and validation set
| 模型 | 分类 | AUC(95% | Brier值 | 灵敏度 | 特异度 | 阳性预测值 | 阴性预测值 | 平衡准确性 |
|---|---|---|---|---|---|---|---|---|
| 训练集 | Lasso | 0.82(0.76~0.87) | 0.150 | 0.780 | 0.840 | 0.810 | 0.820 | 0.810 |
| XGBoost | 0.91(0.87~0.94) | 0.110 | 0.870 | 0.820 | 0.840 | 0.860 | 0.850 | |
| RF | 0.95(0.92~0.97) | 0.080 | 0.910 | 0.880 | 0.890 | 0.900 | 0.900 | |
| DT | 0.88(0.83~0.92) | 0.130 | 0.830 | 0.800 | 0.820 | 0.810 | 0.820 | |
| 验证集 | Lasso | 0.76(0.68~0.83) | 0.180 | 0.720 | 0.790 | 0.750 | 0.760 | 0.760 |
| XGBoost | 0.80(0.73~0.86) | 0.160 | 0.760 | 0.810 | 0.780 | 0.790 | 0.790 | |
| RF | 0.78(0.70~0.85) | 0.170 | 0.740 | 0.770 | 0.760 | 0.750 | 0.760 | |
| DT | 0.72(0.64~0.79) | 0.190 | 0.680 | 0.740 | 0.710 | 0.710 | 0.710 |
| 项目 | 95% | ||
|---|---|---|---|
| 年龄 | |||
| 30~60 vs <30 | 0.630 | 0.65~2.28 | 0.382 |
| >60 vs <30 | 3.018 | 1.15~7.91 | 0.025 |
| 肿瘤体积 | 1.039 | 1.01~1.06 | 0.004 |
| WHO分级 | 2.057 | 1.21~3.49 | 0.008 |
| 肿瘤侧别 | |||
| 右侧vs左侧 | 0.739 | 0.61~2.42 | 0.739 |
| 中线vs左侧 | 2.101 | 1.32~3.34 | 0.002 |
| 放疗 | 0.410 | 0.23~0.75 | 0.004 |
Tab.3 Multivariate Cox regression analysis of prognosis in patients with H3K27M mutant DMG
| 项目 | 95% | ||
|---|---|---|---|
| 年龄 | |||
| 30~60 vs <30 | 0.630 | 0.65~2.28 | 0.382 |
| >60 vs <30 | 3.018 | 1.15~7.91 | 0.025 |
| 肿瘤体积 | 1.039 | 1.01~1.06 | 0.004 |
| WHO分级 | 2.057 | 1.21~3.49 | 0.008 |
| 肿瘤侧别 | |||
| 右侧vs左侧 | 0.739 | 0.61~2.42 | 0.739 |
| 中线vs左侧 | 2.101 | 1.32~3.34 | 0.002 |
| 放疗 | 0.410 | 0.23~0.75 | 0.004 |
Fig.5 Calibration calibration curve of 6-, 12-, and 18-month OS in training set and validation set a. Calibration calibration curve of 6-month OS in training set; b. Calibration calibration curve of 12-month OS in training set; c. Calibration calibration curve of the 18-month OS of the training set; d. Calibration calibration curve of 6-month OS in validation set; e. Calibration calibration curve of 12-month OS in validation set; f. Calibration calibration curve for 18-month OS of the validation set
Fig. 7 Kaplan-Meier survival analysis curves of prognostic factors in H3K27M mutant DMG a. Age; b. Tumor laterality; c. Radiotherapy; d. WHO grade; e. Tumor size
| [1] | 胡鹏, 毛佳颖, 赵淦, 等. MAGED2、EMP2表达与H3K27M突变型弥漫性中线胶质瘤预后的关系研究[J]. 中华神经外科疾病研究杂志, 2025, 19(3): 52-57. doi:10.3760/cma.j.issn.0529-5807.2019.03.005. |
| [2] | 杨沁怡, 李明娜, 陈天羽, 等. 成人H3K27M变异型弥漫性中线胶质瘤临床病理学分析[J]. 中华病理学杂志, 2023, 52(4): 376-383.doi:10.3760/cma.j.cn112151-20220926-00810. |
| [3] | 杜娟, 李永晴, 崔文丽, 等. 弥漫性中线胶质瘤伴H3K27变异型的临床病理学及分子遗传学特征[J]. 临床与实验病理学杂志, 2025, 41(9): 1187-1193.doi:10.13315/j.cnki.cjcep.2025.09.011. |
| [4] | Sarnow K, Majercak E, Qurbonov Q, et al. Neuroimmune-competent human brain organoid model of diffuse midline glioma[J]. Neuro Oncol, 2025, 27(2): 369-382.doi: 10.1093/neuonc/noae245. |
| [5] | Van den BM, Saratsis AM, Geurts M, et al. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions[J]. Neuro Oncol, 2024, 26(2): S110-S124.doi: 10.1093/neuonc/noad220. |
| [6] | Daoud EV, Rajaram V, Cai C, et al. Adult brainstem gliomas with H3K27M mutation: Radiology, pathology, and prognosis[J]. J Neuropathol Exp Neurol, 2018, 77(4): 302-311.doi: 10.1093/jnen/nly006. |
| [7] | 蒋会, 苏晓然, 吴玲, 等. 基于全域ADC直方图评估儿童高级别弥漫性中线胶质瘤H3K27M突变[J]. 临床放射学杂志, 2024, 43(2): 251-256.doi:10.13437/j.cnki.jcr.2024.02.020. |
| [8] | 李海南, 李智, 赖名耀, 等. H3K27M突变型中线胶质瘤的病理学特征及其预后影响因素分析[J]. 中华神经外科杂志, 2022, 38(10): 1001-1006.doi:10.3760/cma.j.cn112050-20220226-00115. |
| [9] | Cheng L, Zhou M, Luo T, et al. H3F3B p.K27I-mutant diffuse midline glioma is a distinct subtype of H3K27-altered diffuse midline glioma[J]. Acta Neuropathol Commun, 2025, 13(1):183. doi: 10.1186/s40478-025-02101-0. |
| [10] | Li X, Sun W, Guo Z, et al. Identification of urinary metabolic biomarkers for histone 3 lysine27-to-methionine mutation diagnosis in brainstem gliomas[J]. Neuro Oncol, 2025, 27(6): 1536-1549.doi: 10.1093/neuonc/noaf038. |
| [11] | Lo Greco MC, Marano G, La RM, et al. Latest Advancements in the management of H3K27M-mutant diffuse intrinsic pontine glioma: A narrative review[J]. Cancers (Basel), 2025, 17(3): 420.doi: 10.3390/cancers17030420. |
| [12] | Sheikh SR, Recinos VMR, Thompson EM, et al. The role of brainstem biopsy and targeted therapies in pediatric diffuse midline glioma/diffuse intrinsic pontine glioma[J]. Front Oncol, 2024, 14((10): 1504440.doi: 10.3389/fonc.2024.1504440. |
| [13] | Angelico G, Mazzucchelli M, Attanasio G, et al. H3K27me3 loss in central nervous system tumors: Diagnostic, prognostic, and therapeutic implications[J]. Cancers (Basel), 2024, 16(20): 3451. doi: 10.3390/cancers16203451. |
| [14] | Chaturvedi A, Sadashiva N, Shukla D, et al. Thalamic H3K27M altered diffuse midline gliomas: Clinicopathological and outcome analysis[J]. Clin Neurol Neurosurg, 2024, 244(12):108449.doi: 10.1016/j.clineuro.2024.108449. |
| [15] | 潘昱辰, 黄国栋, 张协军, 等. H3K27M突变型弥漫性中线胶质瘤的诊治分析[J]. 中国临床神经外科杂志, 2021, 26(10):761-763.doi:10.13798/j.issn.1009-153X.2021.10.006. |
| [16] | 周江芬, 赖名耀, 邓官华, 等. 成人脑干胶质瘤临床特点及预后:单中心10年81例患者回顾性分析[J]. 临床神经外科杂志, 2022, 19(1):70-73. |
| [17] | 梁博, 梁庭毓, 王芳, 等. 弥漫性中线胶质瘤伴H3K27M突变的临床诊疗及预后分析[J]. 中国微侵袭神经外科杂志, 2019, 24(7): 299-302. |
| [18] | Nonnenbroich LF, Bouchal SM, Millesi E, et al. H3K27-altered diffuse midline glioma of the brainstem: From molecular mechanisms to targeted interventions[J]. Cells, 2024, 13(13):1122. doi: 10.3390/cells13131122. |
| [19] | Liu C, Kuang S, Huang T, et al. Radiotherapy plus temozolomide with or without anlotinib in H3K27M-mutant diffuse midline glioma: A retrospective cohort study[J]. CNS Neurosci Ther, 2024, 30(4): e14730. doi: 10.1111/cns.14730. |
| [20] |
Zang D, Dong Z, Liu Y, et al. Single-cell RNA sequencing of anaplastic ependymoma and H3K27M-mutant diffuse midline glioma[J]. BMC Neurol, 2024, 24(1):74.doi: 10.1186/s12883-024-03558-7.
pmid: 38383423 |
| [21] | Yang Z, Sun L, Chen H, et al. New progress in the treatment of diffuse midline glioma with H3K27M alteration[J]. Heliyon, 2024, 10(2): e24877.doi: 10.1016/j.heliyon.2024.e24877. |
| [22] | Huang B, Chen T, Zhang Y, et al. Deep learning for the prediction of the survival of midline diffuse glioma with an H3K27M alteration[J]. Brain Sci, 2023, 13(10):1483.doi: 10.3390/brainsci13101483. |
| [23] | Adhikari S, Bhutada AS, Ladner L, et al. Prognostic indicators for H3K27M-mutant diffuse midline glioma: A population-based retrospective surveillance, epidemiology, and end results database analysis[J]. World Neurosurg, 2023, 178(14): e113-e121. doi: 10.1016/j.wneu.2023.07.001. |
| [24] |
罗敏捷, 陈嘉志, 张旺明. 儿童H3 K27M突变型弥漫性中线胶质瘤治疗进展[J]. 中国现代神经疾病杂志, 2020, 20(4):270-276.
doi: 10.3969/j.issn.1672-6731.2020.04.005 |
| [25] | 王佳, 许朗宁, 葛明, 等. 伴H3 K27M突变的儿童弥漫性中线胶质瘤的临床特点、治疗及预后[J]. 中华神经外科杂志, 2021, 37(2):118-122.doi:10.3760/cma.j.cn112050-20200717-00408. |
| [26] |
Gong X, Kuang S, Deng D, et al. Differences in survival prognosticators between children and adults with H3K27M-mutant diffuse midline glioma[J]. CNS Neurosci Ther, 2023, 29(12): 3863-3875.doi: 10.1111/cns.14307.
pmid: 37311690 |
| [27] | Xu K, Sun Z, Wang L, et al. Bilateral thalamic gliomas harboring alterations of EGFR and H3K27M: An integrated clinicopathological characteristics case series[J]. World Neurosurg, 2022, 168(21): e442-e450. doi: 10.1016/j.wneu.2022.09.118. |
| [28] | Bin-Alamer O, Jimenez AE, Azad TD, et al. H3K27M-altered diffuse midline gliomas among adult patients: A systematic review of clinical features and survival analysis[J]. World Neurosurg, 2022, 165(14): e251-e264.doi: 10.1016/j.wneu.2022.06.020. |
| [29] | Vuong HG, Ngo TNM, Le HT, et al. The prognostic significance of HIST1H3B/C and H3F3A K27M mutations in diffuse midline gliomas is influenced by patient age[J]. J Neurooncol, 2022, 158(3): 405-412.doi: 10.1007/s11060-022-04027-2. |
| [30] | Grimaldi S, Harlay V, Appay R, et al. Adult H3K27M mutated thalamic glioma patients display a better prognosis than unmutated patients[J]. J Neurooncol, 2022, 156(3): 615-623.doi: 10.1007/s11060-022-03943-7. |
| [31] | Gu Q, Huang Y, Zhang H, et al. Case report: Five adult cases of H3K27-altered diffuse midline glioma in the spinal cord[J]. Front Oncol, 2021, 11(10): 701113.doi: 10.3389/fonc.2021.701113. |
| [1] | Zhao Xueting, Bai Jiawen, Sun Jun. Analysis of risk factors for liver fibrosis in metabolic dysfunction-associated fatty liver disease and construction of a nomogram [J]. Clinical Focus, 2025, 40(5): 417-422. |
| [2] | Wang Zhuangzhuang, Ren Huan, Liu Yanting, Tian Chunlei. Construction of a nomogram to predict postoperative hydrocephalus in patients with aneurysmal subarachnoid hemorrhage based on the Dryad database and its validation [J]. Clinical Focus, 2025, 40(4): 313-319. |
| [3] | Wang Zhuangzhuang, Ren Huan, Liu Yanting, Tian Chunlei, Ai Wenbing. Construction of a nomogram to predict the risk of lung metastasis in extremity osteosarcomas based on the SEER database and its validation [J]. Clinical Focus, 2024, 39(5): 413-419. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||