Clinical Focus ›› 2025, Vol. 40 ›› Issue (10): 943-947.doi: 10.3969/j.issn.1004-583X.2025.10.011
Previous Articles Next Articles
Received:2025-05-13
Online:2025-10-20
Published:2025-10-31
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.10.011
| [1] |
Hendriks LEL, Remon J, Faivre-Finn C, et al. Non-small-cell lung cancer[J]. Nat Rev Dis Primers, 2024, 10(1):71.doi:10.1038/s41572-024-00551-9.
pmid: 39327441 |
| [2] | 滕熠, 张晓丹, 夏昌发, 等. 中国与全球癌症发病、死亡和患病对比及其预测分析:GLOBOCAN 2022数据解读[J]. 中华肿瘤防治杂志, 2024, 31(23):1413-1420.doi:10.16073/j.cnki.cjcpt.2024.23.01. |
| [3] | Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33.doi:10.3322/caac.21654. |
| [4] |
Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations[J]. J Clin Oncol, 2022, 40(6):611-625.doi:10.1200/JCO.21.01626.
pmid: 34985916 |
| [5] |
Herrera-Juárez M, Serrano-Gómez C, Bote-de-Cabo H, et al. Targeted therapy for lung cancer: Beyond EGFR and ALK[J]. Cancer, 2023, 129(12):1803-1820.doi:10.1002/cncr.34757.
pmid: 37073562 |
| [6] |
Lahiri A, Maji A, Potdar PD, et al. Lung cancer immunotherapy: Progress, pitfalls, and promises[J]. Mol Cancer, 2023, 22(1):40.doi:10.1186/s12943-023-01740-y.
pmid: 36810079 |
| [7] |
Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(6):586-597.doi:10.1200/JCO.21.01497.
pmid: 34985920 |
| [8] | 赵华青, 尹红, 唐华平. 评估非小细胞肺癌患者预后模型的构建及验证分析[J]. 临床医学进展, 2024, 14(3):2269-2282.doi:10.12677/acm.2024.143972. |
| [9] | 郭佳佳, 郜永月, 毛哲哲. 基于血清肿瘤标志物构建非小细胞肺癌患者预后的预测模型[J]. 现代肿瘤医学, 2024, 32(14):2554-2560.doi:10.3969/j.issn.1672-4992.2024.14.010. |
| [10] | 刘洋, 王凯奇, 郑新华, 等. 基于sB7-H4、IFN-γ构建非小细胞肺癌患者预后预测模型[J]. 临床肿瘤学杂志, 2024, 29(9):850-853.doi:10.3969/j.issn.1009-0460.2024.09.004. |
| [11] | 田雪琪, 焦丽静, 毕凌, 等. 基于外周血生物标志物的非小细胞肺癌预后预测模型的系统评价[J]. 中国循证医学杂志, 2023, 23(12):1407-1412.doi:10.7507/1672-2531.202306071. |
| [12] | She Y, Jin Z, Wu J, et al. Development and validation of a deep learning model for non-small cell lung cancer survival[J]. JAMA Netw Open, 2020, 3(6):e205842.doi:10.1001/jamanetworkopen.2020.5842. |
| [13] |
Jia B, Zheng Q, Wang J, et al. A nomogram model to predict death rate among non-small cell lung cancer (NSCLC) patients with surgery in surveillance, epidemiology, and end results (SEER) database[J]. BMC Cancer, 2020, 20(1):666.doi:10.1186/s12885-020-07147-y.
pmid: 32680464 |
| [14] | 谢东, 何聪, 俞金娜, 等. 影像组学在晚期非小细胞肺癌疗效和预后评估中的应用价值[J]. 浙江临床医学, 2024, 26(8):1253-1257. |
| [15] | 陈晓, 杨斌. 影像组学技术在非小细胞肺癌预后中的应用研究[J]. CT理论与应用研究, 2024, 33(3):385-390.doi:10.15953/j.ctta.2023.071. |
| [16] | Verma S, Magazzù G, Eftekhari N, et al. Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients[J]. Cell Rep Methods, 2024, 4(7):100817.doi:10.1016/j.crmeth.2024.100817. |
| [17] | Na KJ, Kim YT, Goo JM, et al. Clinical utility of a CT-based AI prognostic model for segmentectomy in non-small cell lung cancer[J]. Radiology, 2024, 311(1):e231793.doi:10.1148/radiol.231793. |
| [18] | 周洁, 郑燕婷, 江舒琪, 等. CT影像组学联合形态学特征模型评估非小细胞肺癌患者预后生存期的价值[J]. 中国医学物理学杂志, 2024, 41(1):18-26.doi:10.3969/j.issn.1005-202X.2024.01.003. |
| [19] | 俞愈, 李继会, 章斌, 等. 18F-FDG PET/CT影像组学预测晚期非小细胞肺癌预后的价值[J]. 海南医学院学报, 2023, 29(3):210-215.doi:10.13210/j.cnki.jhmu.20220906.001. |
| [20] | Han K, Wang J, Qian K, et al. Establishment of non-small-cell lung cancer risk prediction model based on prognosis-associated ADME genes[J]. Biosci Rep, 2021, 41(10): BSR20211433.doi:10.1042/BSR20211433. |
| [21] | 郑明, 吕双双. 基于miRNA和临床特征建立可手术肺鳞癌预后的预测模型[J]. 临床肿瘤学杂志, 2024, 29(6):532-538.doi:10.3969/j.issn.1009-0460.2024.06.003. |
| [22] | 李智, 刀承欢, 郭思佳. 基于线粒体基因构建非小细胞肺癌预后模型及肿瘤免疫微环境分析[J]. 现代预防医学, 2025, 52(3):398-405.doi:10.20043/j.cnki.MPM.202410233. |
| [23] | 红霞, 王立红. 非小细胞肺癌免疫治疗疗效和预后评估相关标志物研究进展[J]. 检验医学与临床, 2025, 22(2):280-284, 288.doi:10.3969/j.issn.1672-9455.2025.02.026. |
| [24] | 鲁欣然, 王宁, 刘志强, 等. LUNX基因作为与免疫细胞浸润相关的非小细胞肺癌预后生物标志物[J]. 中国免疫学杂志, 2024, 40(6):1197-1202.doi:10.3969/j.issn.1000-484X.2024.06.014. |
| [25] |
Pang J, Yu Q, Chen Y, et al. Integrating single-cell RNA-seq to construct a neutrophil prognostic model for predicting immune responses in non-small cell lung cancer[J]. J Transl Med, 2022, 20(1):531.doi:10.1186/s12967-022-03723-x.
pmid: 36401283 |
| [26] | 赵倩倩, 孙之, 潘月眉, 等. ALOX5可作为与免疫细胞浸润相关的非小细胞肺癌预后生物标志物[J]. 中南大学学报(医学版), 2023, 48(3):311-322. doi:10.11817/j.issn.1672-7347.2023.220427. |
| [27] | 许新颜, 陈佳艳, 茅静芳, 等. 非小细胞肺癌的放射治疗:演进与提高[J]. 中国癌症杂志, 2020, 30(10):777-784.doi:10.19401/j.cnki.1007-3639.2020.10.008. |
| [28] | 陈焕, 徐裕金. 免疫检查点抑制剂与放疗联合治疗局部晚期不可切除非小细胞肺癌的介入时机的研究进展[J]. 中国肿瘤生物治疗杂志, 2023, 30(12):1110-1115.doi:10.3872/j.issn.1007-385x.2023.12.011. |
| [29] |
Chun SG, Hu C, Komaki RU, et al. Long-term prospective outcomes of intensity modulated radiotherapy for locally advanced lung cancer: A secondary analysis of a randomized clinical trial[J]. JAMA Oncology, 2024, 10(8):1111-1115.doi:10.1001/jamaoncol.2024.1841.
pmid: 38935373 |
| [30] | Tambe NS, Pires IM, Moore C, et al. Predicting personalised and progressive adaptive dose escalation to gross tumour volume using knowledge-based planning models for inoperable advanced-stage non-small cell lung cancer patients treated with volumetric modulated arc therapy[J]. Biomed Phys Eng Express, 2022, 8(3):10.doi:10.1088/2057-1976/ac56eb. |
| [31] | Li C, Luo H, Song W, et al. Dosimetric comparison of four radiotherapy techniques for stage III non-small cell lung cancer[J]. Oncol Lett, 2023, 26(2):347.doi:10.3892/ol.2023.13933. |
| [32] | Viani GA, Gouveia AG, Louie AV, et al. Stereotactic ablative radiotherapy for locally advanced non-small cell lung cancer: A systematic review and meta-analysis[J]. Radiother Oncol, 2024, 201:110439.doi:10.1016/j.radonc.2024.110439. |
| [33] |
Palma DA, Bahig H, Hope A, et al. Stereotactic radiation therapy in early non-small cell lung cancer and interstitial lung disease: A nonrandomized clinical trial[J]. JAMA Oncol, 2024, 10(5):575-582.doi:10.1001/jamaoncol.2023.7269.
pmid: 38451491 |
| [34] | 孙小兵, 柏会明, 仇红艳, 等. 调强放疗联合TP方案化疗治疗局部晚期非小细胞肺癌的疗效及预后影响因素分析[J]. 现代肿瘤医学, 2021, 29(24):4337-4340.doi:10.3969/j.issn.1672-4992.2021.24.015. |
| [35] | 周路, 余征, 刘星. 调强放疗治疗局部晚期NSCLC的预后影响因素分析[J]. 中国实用医药, 2020, 15(19):52-54.doi:10.14163/j.cnki.11-5547/r.2020.19.020. |
| [36] |
Nieder C, Imingen KS. Palliative radiotherapy for non-metastatic non-small-cell lung cancer: Impact of blood test results on survival[J]. In Vivo, 2023, 37(2):771-776.doi:10.21873/invivo.13140.
pmid: 36881095 |
| [37] | Hanazawa H, Matsuo Y, Takeda A, et al. Development and validation of a prognostic model for non-lung cancer death in elderly patients treated with stereotactic body radiotherapy for non-small cell lung cancer[J]. J Radiat Res, 2021,doi:10.1093/jrr/rrab093. |
| [38] |
Yan M, Zhang Z, Tian J, et al. Whole lung radiomic features are associated with overall survival in patients with locally advanced non-small cell lung cancer treated with definitive radiotherapy[J]. Radiat Oncol, 2025, 20(1):9.doi:10.1186/s13014-025-02583-1.
pmid: 39825409 |
| [39] | Chen X, Tong X, Qiu Q, et al. Radiomics nomogram for predicting locoregional failure in locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy[J]. Acad Radiol, 2022, 29(Suppl 2):S53-S61.doi:10.1016/j.acra.2020.11.018. |
| [40] | Pan Y, Shi L, Liu Y, et al. Multi-omics models for predicting prognosis in non-small cell lung cancer patients following chemotherapy and radiotherapy: A multi-center study[J]. Radiother Oncol, 2025, 204:110715.doi:10.1016/j.radonc.2025.110715. |
| [41] | Bhattarai A, Shah S, Abu Serhan H, et al. Genomic profiling for non-small cell lung cancer: Clinical relevance in staging and prognosis[J]. Medicine (Baltimore), 2023, 102(47):e36003.doi:10.1097/MD.0000000000036003. |
| [42] |
Chen D, Guo J, Huang H, et al. Prognostic value of circulating tumor DNA in operable non-small cell lung cancer: A systematic review and reconstructed individual patient-data based meta-analysis[J]. BMC Med, 2023, 21(1):467.doi:10.1186/s12916-023-03181-2.
pmid: 38012727 |
| [43] | Wang JF, Lu HD, Wang Y, et al. Clinical characteristics and prognosis of non-small cell lung cancer patients with liver metastasis: A population-based study[J]. World J Clin Cases, 2022, 10(30):10882-10895.doi:10.12998/wjcc.v10.i30.10882. |
| [44] |
Zhou Y, Dong Y, Sun Q, et al. Diagnosis and prognosis of non-small cell lung cancer based on machine learning algorithms[J]. Comb Chem High Throughput Screen, 2023, 26(12):2170-2183.doi:10.2174/1386207326666230110115804.
pmid: 36627791 |
| [45] | Shi X, Dong A, Jia X, et al. Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on T-cell marker genes to predict prognosis and therapeutic response in lung squamous cell carcinoma[J]. Front Immunol, 2022, 13:992990.doi:10.3389/fimmu.2022.992990. |
| [46] | Yang M, Ma J, Zhang C, et al. Multimodal data deep learning method for predicting symptomatic pneumonitis caused by lung cancer radiotherapy combined with immunotherapy[J]. Front Immunol, 2024, 15:1492399.doi:10.3389/fimmu.2024.1492399. |
| [47] | Li Y, Wu X, Yang P, et al. Machine learning for lung cancer diagnosis, treatment, and prognosis[J]. Genomics Proteomics Bioinformatics, 2022, 20(5):850-866.doi:10.1016/j.gpb.2022.11.003. |
| [48] |
Cheng J, Xiao M, Meng Q, et al. Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction[J]. World J Surg Oncol, 2024, 22(1):156.doi:10.1186/s12957-024-03435-0.
pmid: 38872167 |
| [49] |
Huang S, Yang J, Shen N, et al. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective[J]. Semin Cancer Biol, 2023, 89:30-37.doi:10.1016/j.semcancer.2023.01.006.
pmid: 36682439 |
| [50] | Pei Q, Luo Y, Chen Y, et al. Artificial intelligence in clinical applications for lung cancer: Diagnosis, treatment and prognosis[J]. Clin Chem Lab Med, 2022, 60(12):1974-1983.doi:10.1515/cclm-2022-0291. |
| [51] | Teng X, Han K, Jin W, et al. Development and validation of an early diagnosis model for bone metastasis in non-small cell lung cancer based on serological characteristics of the bone metastasis mechanism[J]. EClinicalMedicine, 2024, 72:102617.doi:10.1016/j.eclinm.2024.102617. |
| [52] | Chen Y, Zhou C, Zhang X, et al. Construction of a novel radioresistance-related signature for prediction of prognosis, immune microenvironment and anti-tumour drug sensitivity in non-small cell lung cancer[J]. Ann Med, 2025, 57(1):2447930.doi:10.1080/07853890.2024.2447930. |
| [53] | 徐嘉昕, 钱凯, 蒋立虹. 机器学习算法在肺癌临床诊断及生存预后分析中的应用[J]. 中国胸心血管外科临床杂志, 2022, 29(6):777-781.doi:10.7507/1007-4848.202102036. |
| [54] |
Luo T, Yan M, Zhou M, et al. Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters[J]. Radiol Med, 2025, 130(1): 96-109. doi:10.1007/s11547-024-01919-3.
pmid: 39542968 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||