Clinical Focus ›› 2025, Vol. 40 ›› Issue (11): 1052-1056.doi: 10.3969/j.issn.1004-583X.2025.11.015
Received:2025-08-01
Online:2025-11-20
Published:2025-12-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.11.015
| [1] |
Fukushima K, Fukushima J, Barnes GR. Clinical application of eye movement tasks as an aid to understanding Parkinson's disease pathophysiology[J]. Exp Brain Res, 2017, 235(5):1309-1321.doi:10.1007/s00221-017-4916-5.
pmid: 28258438 |
| [2] | Li H, Zhang X, Yang Y, et al. Abnormal eye movements in Parkinson's disease: From experimental study to clinical application[J]. Parkinsonism Relat Disord, 2023, 115:105791.doi:10.1016/j.parkreldis.2023.105791. |
| [3] | Middleton FA, Strick PL. Basal-ganglia ‘projections’ to the prefrontal cortex of the primate[J]. Cereb Cortex, 2002, 12(9):926-935.doi:10.1093/cercor/12.9.926. |
| [4] |
Antoniades CA, Spering M. Eye movements in Parkinson's disease: From neurophysiological mechanisms to diagnostic tools[J]. Trends Neurosci, 2024, 47(1):71-83.doi:10.1016/j.tins.2023.11.001.
pmid: 38042680 |
| [5] |
Chambers JM, Prescott TJ. Response times for visually guided saccades in persons with Parkinson's disease: A meta-analytic review[J]. Neuropsychologia, 2010, 48(4):887-899.doi:10.1016/j.neuropsychologia.2009.11.006.
pmid: 19913042 |
| [6] |
Terao Y. Making saccades, fast and slow: The voluntary versus reflexive saccade systems in Parkinson's disease[J]. Clin Neurophysiol, 2022, 143:143-144.doi:10.1016/j.clinph.2022.08.012.
pmid: 36089449 |
| [7] |
Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: A critical reappraisal[J]. Nat Neurosci, 2014, 17(8):1022-1030.doi:10.1038/nn.3743.
pmid: 25065439 |
| [8] |
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease[J]. Nat Rev Neurosci, 2017, 18(7):435-450.doi:10.1038/nrn.2017.62.
pmid: 28592904 |
| [9] | Gaymard B. Cortical and sub-cortical control of saccades and clinical application[J]. Rev Neurol (Paris), 2012, 168(10):734-740.doi:10.1016/j.neurol.2012.07.016. |
| [10] |
Macaskill MR, Graham CF, Pitcher TL, et al. The influence of motor and cognitive impairment upon visually-guided saccades in Parkinson's disease[J]. Neuropsychologia, 2012, 50(14):3338-3347.doi:10.1016/j.neuropsychologia.2012.09.025.
pmid: 23000134 |
| [11] |
Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients[J]. Trends Neurosci, 1990, 13(7):296-302.doi:10.1016/0166-2236(90)90113-o.
pmid: 1695407 |
| [12] |
Sereno AB, Holzman PS. Spatial selective attention in schizophrenic, affective disorder, and normal subjects[J]. Schizophr Res, 1996, 20(1-2): 33-50.doi:10.1016/0920-9964(95)00077-1.
pmid: 8794492 |
| [13] | 林茵, 周梦溪, 姜春燕, 等. 新诊断未用药帕金森病患者的眼球运动特点分析[J]. 中华神经科杂志, 2023, 56(9):976-985. |
| [14] |
Braak H, Rub U, Del Tredici K. Cognitive decline correlates with neuropathological stage in Parkinson's disease[J]. J Neurol Sci, 2006, 248(1-2):255-258.doi:10.1016/j.jns.2006.05.011.
pmid: 16814807 |
| [15] | Terao Y, Fukuda H, Yugeta A, et al. Initiation and inhibitory control of saccades with the progression of Parkinson's disease-changes in three major drives converging on the superior colliculus[J]. Neuropsychologia, 2011, 49(7):1794-1806.doi:10.1016/j.neuropsychologia.2011.03.002. |
| [16] | Armstrong RA. Oculo-visual dysfunction in Parkinson's disease[J]. J Parkinsons Dis, 2015, 5(4):715-726.doi:10.3233/JPD-150686. |
| [17] |
Degos B, Pouget P, Missal M. From anticipation to impulsivity in Parkinson's disease[J]. NPJ Parkinsons Dis, 2022, 8(1):125.doi:10.1038/s41531-022-00393-w.
pmid: 36184657 |
| [18] |
Terao Y, Tokushige S, Inomata-Terada S, et al. Differentiating early Parkinson's disease and multiple system atrophy with parkinsonism by saccade velocity profiles[J]. Clin Neurophysiol, 2019, 130(12):2203-2215.doi:10.1016/j.clinph.2019.09.004.
pmid: 31669865 |
| [19] |
Lemos J, Pereira D, Almendra L, et al. Distinct functional properties of the vertical and horizontal saccadic network in health and Parkinson's disease: An eye-tracking and fMRI study[J]. Brain Res, 2016, 1648(Pt A):469-484.doi:10.1016/j.brainres.2016.07.037.
pmid: 27545665 |
| [20] |
Shaikh AG, Ghasia FF. Saccades in Parkinson's disease: Hypometric, slow, and maladaptive[J]. Prog Brain Res, 2019, 249:81-94.doi:10.1016/bs.pbr.2019.05.001.
pmid: 31325999 |
| [21] |
Linder J, Wenngren B, Stenlund H, et al. Impaired oculomotor function in a community-based patient population with newly diagnosed idiopathic parkinsonism[J]. J Neurol, 2012, 259(6):1206-1214.doi:10.1007/s00415-011-6338-9.
pmid: 22173951 |
| [22] |
Zhang J, Zhang B, Ren Q, et al. Eye movement especially vertical oculomotor impairment as an aid to assess Parkinson's disease[J]. Neurol Sci, 2021, 42(6):2337-2345.doi:10.1007/s10072-020-04796-6.
pmid: 33043395 |
| [23] |
Tada M, Nishizawa M, Onodera O. Redefining cerebellar ataxia in degenerative ataxias: Lessons from recent research on cerebellar systems[J]. J Neurol Neurosurg Psychiatry, 2015, 86(8):922-928.doi:10.1136/jnnp-2013-307225.
pmid: 25637456 |
| [24] | Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum[J]. Proc Natl Acad Sci U S A, 2010, 107(18):8452-8456.doi:10.1073/pnas.1000496107. |
| [25] |
Pretegiani E, Optican LM. Eye movements in Parkinson's disease and inherited Parkinsonian syndromes[J]. Front Neurol, 2017, 8:592.doi:10.3389/fneur.2017.00592.
pmid: 29170650 |
| [26] |
Waldthaler J, Stock L, Student J, et al. Antisaccades in Parkinson's disease: A meta-analysis[J]. Neuropsychol Rev, 2021, 31(4):628-642.doi:10.1007/s11065-021-09489-1.
pmid: 33742354 |
| [27] | Antoniades CA, Demeyere N, Kennard C, et al. Antisaccades and executive dysfunction in early drug-naive Parkinson's disease: The discovery study[J]. Mov Disord, 2015, 30(6):843-847.doi:10.1002/mds.26134. |
| [28] |
Waldthaler J, Tsitsi P, Svenningsson P. Vertical saccades and antisaccades: complementary markers for motor and cognitive impairment in Parkinson's disease[J]. NPJ Parkinsons Dis, 2019, 5:11.doi:10.1038/s41531-019-0083-7.
pmid: 31263745 |
| [29] |
Munoz DP, Everling S. Look away: The anti-saccade task and the voluntary control of eye movement[J]. Nat Rev Neurosci, 2004, 5(3):218-228.doi:10.1038/nrn1345.
pmid: 14976521 |
| [30] | Ma W, Li M, Wu J, et al. Multiple step saccades in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of Parkinson's disease[J]. Front Aging Neurosci, 2022, 14:912967.doi:10.3389/fnagi.2022.912967. |
| [31] |
Pelzer EA, Dillenburger B, Grundmann S, et al. Hypomania and saccadic changes in Parkinson's disease: Influence of D2 and D3 dopaminergic signalling[J]. NPJ Parkinsons Dis, 2020, 6:5.doi:10.1038/s41531-019-0107-3.
pmid: 31970287 |
| [32] |
Gallea C, Wicki B, Ewenczyk C, et al. Antisaccade, a predictive marker for freezing of gait in Parkinson's disease and gait/gaze network connectivity[J]. Brain, 2021, 144(2):504-514.doi:10.1093/brain/awaa407.
pmid: 33279957 |
| [33] | Carpenter MG, Bloem BR. A new twist on turning movements in Parkinson's disease patients[J]. Mov Disord, 2011, 26(12):2151-2153.doi:10.1002/mds.23980. |
| [34] | Kelly VE, Johnson CO, McGough EL, et al. Association of cognitive domains with postural instability/gait disturbance in Parkinson's disease[J]. Parkinsonism Relat Disord, 2015, 21(7):692-697.doi:10.1016/j.parkreldis.2015.04.002. |
| [35] |
Munoz MJ, Reilly JL, Pal GD, et al. Medication adversely impacts visually-guided eye movements in Parkinson's disease[J]. Clin Neurophysiol, 2022, 143:145-153.doi:10.1016/j.clinph.2022.07.505.
pmid: 35995722 |
| [36] | Yu Y, Yan W, Xu X, et al. Response times for reflexive saccades correlate with cognition in Parkinson's disease, not disease severity or duration[J]. Front Neurol, 2022, 13:945201.doi:10.3389/fneur.2022.945201. |
| [37] | Mestre TA, Fereshtehnejad S, Berg D, et al. Parkinson's disease subtypes: Critical appraisal and recommendations[J]. J Parkinsons Dis, 2021, 11(2):395-404.doi:10.3233/JPD-202472. |
| [38] | Barbosa P, Kaski D, Castro P, et al. Saccadic direction errors are associated with impulsive compulsive behaviours in Parkinson's disease patients[J]. J Parkinsons Dis, 2019, 9(3):625-630.doi:10.3233/JPD-181460. |
| [39] | Saranza G, Lang AE. Levodopa challenge test: Indications, protocol, and guide[J]. J Neurol, 2021, 268(9):3135-3143.doi:10.1007/s00415-020-09810-7. |
| [40] |
Terao Y, Fukuda H, Ugawa Y, et al. New perspectives on the pathophysiology of Parkinson's disease as assessed by saccade performance: A clinical review[J]. Clin Neurophysiol, 2013, 124(8):1491-1506.doi:10.1016/j.clinph.2013.01.021.
pmid: 23499161 |
| [41] |
Fawcett AP, Gonzalez EG, Moro E, et al. Subthalamic nucleus deep brain stimulation improves saccades in Parkinson's disease[J]. Neuromodulation, 2010, 13(1):17-25.doi:10.1111/j.1525-1403.2009.00246.x.
pmid: 21992760 |
| [42] | Munoz MJ, Goelz LC, Pal GD, et al. Increased subthalamic nucleus deep brain stimulation amplitude impairs inhibitory control of eye movements in Parkinson's disease[J]. Neuromodulation, 2022, 25(6):866-876.doi:10.1111/ner.13476. |
| [43] |
Mitchell T, Lehericy S, Chiu SY, et al. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: A review[J]. JAMA Neurol, 2021, 78(10):1262-1272.doi:10.1001/jamaneurol.2021.1312.
pmid: 34459865 |
| [1] | . [J]. Clinical Focus, 2025, 40(8): 748-752. |
| [2] | Li Qian, Zhong Ping. Clinical characteristics and risk factors of Parkinson's disease with white matter lesions [J]. Clinical Focus, 2024, 39(3): 222-226. |
| [3] | Wang Jiuxue, Li Na, Jin Wei, Wang Shuo, Chang Yajun, Wang Tianjun. Correlation between serum uric acid, homocysteine and cystatin C levels with motor symptoms and cognitive function in Parkinson's disease patients [J]. Clinical Focus, 2024, 39(2): 125-129. |
| [4] | . [J]. Clinical Focus, 2023, 38(9): 845-850. |
| [5] | . [J]. Clinical Focus, 2023, 38(9): 855-858. |
| [6] | . [J]. Clinical Focus, 2023, 38(2): 189-192. |
| [7] | Li Wenjun, Zhang Ce, Liu Junyan. Improving circulation aggravates the orthostatic hypotension in a patient with Parkinson's disease: A case report [J]. Clinical Focus, 2022, 37(10): 934-937. |
| [8] | . [J]. Clinical Focus, 2022, 37(5): 463-466. |
| [9] | Guo Chang, Shen Huinan, Sun Yimeng, Wang Dongyu. Correlation between blood lipid and homocysteine and cognitive impairment in Parkinson's disease [J]. Clinical Focus, 2022, 37(2): 128-132. |
| [10] | Zhao Hang;Ge Hanming;Liang Zhanhua;Wang Yan. Correlation analysis of individualized treatment compliance and disease progression in patients with Parkinson disease [J]. Clinical Focus, 2015, 30(5): 499-502. |
| [11] | SUN Lin-juan;XU Sheng-li;ZHOU Ming;MAO Li-jun;CHEN Biao. Protection of cysteamine on 1-methy1-4-phenylpyridinium induced SH-SY5Y in Parkinson's disease cell model by antioxidant [J]. Clinical Focus, 2014, 29(7): 740-743. |
| [12] | SUN Lin-juan;MAO Li-jun;XU Sheng-li;ZHOU Ming;CHEN Biao. Protection of cysteamine on dopaminergic neurons in Parkinson disease mice model by antioxidant [J]. Clinical Focus, 2013, 28(2): 181-0. |
| [13] | . [J]. Clinical Focus, 2012, 27(15): 1359-0. |
| [14] | ZENG Wen-jing;ZHANG Xiao-ying;LI Yan-yun;LIU Yan;LI Yan. Relationship between polymorphism of monoamine oxidase B gene and Parkinson disease in Xinjiang Uygurs [J]. Clinical Focus, 2012, 27(9): 764-766. |
| [15] | . [J]. CLINICAL FOCUS, 2011, 26(10): 888901-0. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||