Clinical Focus ›› 2025, Vol. 40 ›› Issue (8): 736-741.doi: 10.3969/j.issn.1004-583X.2025.08.012
Previous Articles Next Articles
Received:
2025-06-25
Online:
2025-08-20
Published:
2025-09-05
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.08.012
[1] | 冠心病合理用药指南(第2版)[J]. 中国医学前沿杂志(电子版), 2018, 10(6):1-130. |
[2] | 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220. |
[3] | Jain P. Traditional and novel non-statin lipid-lowering drugs[J]. Indian Heart J, 2023, 76 Suppl 1(Suppl 1):S38-S43. |
[4] | Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: Promises and emerging challenges[J]. Vascul Pharmacol, 2014, 62(2):103-111. |
[5] | Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes[J]. NEngl J Med, 2016, 375(22):2144-2153. |
[6] |
Bergeron N, Phan BAP, Ding Y, et al. Proprotein convertase subtilisin/kexin type 9 inhibition: A new therapeutic mechanism for reducing cardiovascular disease risk[J]. Circulation, 2015, 132(17):1648-1666.
doi: 10.1161/CIRCULATIONAHA.115.016080 pmid: 26503748 |
[7] |
Sabatine MS. PCSK9 inhibitors: Clinical evidence and implementation[J]. Nat Rev Cardiol, 2019, 16(3):155-165.
doi: 10.1038/s41569-018-0107-8 pmid: 30420622 |
[8] |
Santos RD, Wiegman A, Caprio S, et al. Alirocumab in pediatric patients with heterozygous familial hypercholesterolemia: A randomized clinical trial[J]. JAMA Pediatr, 2024, 178(3):283-293.
doi: 10.1001/jamapediatrics.2023.6477 pmid: 38315470 |
[9] |
Iannuzzo G, Buonaiuto A, Calcaterra I, et al. Association between causative mutations and response to PCSK9 inhibitor therapy in subjects with familial hypercholesterolemia: A single center real-world study[J]. Nutr Metab Cardiovasc Dis, 2022, 32(3):684-691.
doi: 10.1016/j.numecd.2021.10.025 pmid: 34991937 |
[10] | Kaplon H, Crescioli S, Chenoweth A, et al. Antibodies to watch in 2023[J]. MAbs, 2023, 15(1):2153410. |
[11] | Li JJ. Tafolecimab, a novel member of PCSK9 monoclonal antibodies, is worth expecting in a Chinese population[J]. JACC Asia, 2023, 3(4):646. |
[12] |
Careskey HE, Davis RA, Alborn WE, et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9[J]. J Lipid Res, 2008, 49(2):394-398.
doi: 10.1194/jlr.M700437-JLR200 pmid: 18033751 |
[13] |
Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes[J]. Cell Metab, 2014, 20(4):573-591.
doi: 10.1016/j.cmet.2014.08.005 pmid: 25242225 |
[14] | Xu M, Zhu X, Wu J, et al. PCSK9 inhibitor recaticimab for hypercholesterolemia on stable statin dose: A randomized, double-blind, placebo-controlled phase 1b/2 study[J]. BMC Med, 2022, 20(1):1-13. |
[15] | Raschi E, Casula M, Cicero AFG, et al. Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events[J]. Pharmacol Ther, 2023, 250:108507. |
[16] | Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia[J]. N Engl J Med, 2020, 383(8):711-720. |
[17] | Warden BA, Duell PB. Evinacumab for treatment of familial hypercholesterolemia[J]. Expert Rev Cardiovasc Ther, 2021, 19(8):739-751. |
[18] | Wiegman A, Greber-Platzer S, Ali S, et al. Evinacumab for pediatric patients with homozygous familial hypercholesterolemia[J]. Circulation, 2024, 149(5):343-353. |
[19] | Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides[J]. N Engl J Med, 2017, 377(3):222-232. |
[20] |
Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia[J]. Eur Heart J, 2020, 41(40):3936-3945.
doi: 10.1093/eurheartj/ehaa689 pmid: 32860031 |
[21] | Pfizer. Pfizer and Ionis announce discontinuation of Vupanorsen clinical development program[EB/OL]. [2022-01-31].https://www.vbdata.cn/newsDetail/6a727552829011ec8b9100163e0cb09b. |
[22] | Watts GF, Scott R, Gladding P, et al. RNA interference targeting hepatic angiopoietin-like protein 3 results in prolonged reductions in plasma triglycerides and LDL-C in human subjects[J]. Circulation, 2019, 140:E987-988. |
[23] |
Watts GF, Schwabe C, Scott R, et al. RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: Phase 1 basket trial cohorts[J]. Nat Med, 2023, 29(9):2216-2223.
doi: 10.1038/s41591-023-02494-2 pmid: 37626170 |
[24] | Tomlinson B, Wu QY, Zhong YM, et al. Advances in dyslipidaemia treatments: Focusing on ApoC3 and ANGPTL3 inhibitors[J]. J Lipid Atheroscler, 2023, 13(1): 2-20. |
[25] | Raal F, Bergeron J, Watts GF, et al. ARO-ANG3, an investigational RNAi therapeutic, decreases serum LDL-cholesterol, apolipoprotein B, and angiopoietin-like protein 3 in patients with homozygous familial hypercholesterolaemia[EB/OL]. [2023-06-18].https://xueshu.baidu.com/usercenter/paper/show?paperid=17490tb0t74f0t30jg0b08g014512614&site=xueshu_se. |
[26] |
Forcheron F, Cachefo A, Thevenon S, et al. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients[J]. Diabetes, 2002, 51:3486-3491.
pmid: 12453904 |
[27] | Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease[J]. N Engl J Med, 2014, 371:22-31. |
[28] | Graham MJ, Lee RG, Bell TA 3rd, et al. Antisense oligonucleotide inhibition of apolipoprotein C-Ⅲ reduces plasma triglycerides in rodents, nonhuman primates, and humans[J]. Circ Res, 2013, 112:1479-1490. |
[29] | Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-Ⅲ in patients with hypertriglyceridemia[J]. N Engl J Med, 2015, 373:438-447. |
[30] |
Prohaska TA, Alexander VJ, Karwatowska-Prokopczuk E, et al. APOC3 inhibition with volanesorsen reduces hepatic steatosis in patients with severe hypertriglyceridemia[J]. J Clin Lipidol, 2023, 17:406-411.
doi: 10.1016/j.jacl.2023.04.007 pmid: 37164837 |
[31] |
Alexander VJ, Xia S, Hurh E, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels[J]. Eur Heart J, 2019, 40:2785-2796.
doi: 10.1093/eurheartj/ehz209 pmid: 31329855 |
[32] | Tardif JC, Karwatowska-Prokopczuk E, Amour ES, et al. Apolipoprotein C-Ⅲ reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk[J]. Eur Heart J, 2022, 43:1401-1412. |
[33] | Schwabe C, Scott R, Sullivan D, et al. RNA interference targeting apolipoprotein C-Ⅲ with ARO-APOC3 in healthy volunteers mimics lipid and lipoprotein findings seen in subjects with inherited apolipoprotein C-Ⅲ deficiency[J]. EUR HEART J, 2020, 41(Supple 2):3330. |
[1] | Su Miao, Wang Sashuang, Zhao Dongqiang. Interpretation of the Chinese Expert Consensus on Gastrointestinal Endoscopic Treatment of Obesity [J]. Clinical Focus, 2025, 40(4): 366-371. |
[2] | Qiao Yan, Cai Jia, Zeng Jing, Li Ruizhen, Zhang Huijuan, Zhang Xiaoming. A case of sudden death from mitochondrial cardiomyopathy [J]. Clinical Focus, 2024, 39(5): 445-449. |
[3] | . [J]. Clinical Focus, 2024, 39(5): 455-459. |
[4] | Liu Jing, Luo Na, Feng Shangyong, Wang Yan, Zhang Zhenwen, She Dunmin. Prevalence and risk factors of hyperuricemia in health examination population in Yangzhou, 2020 [J]. Clinical Focus, 2023, 38(5): 428-432. |
[5] | Han Tuo, Wang Lixia, Wang Yiwen, Li Ying, Gong Hong, Zhang Chunyan, Zhang Yan, Li Yongqin, Wang Congxia. Correlation analysis between dietary nutrient intake with blood glucose and insulin resistance in healthy population [J]. Clinical Focus, 2023, 38(2): 126-131. |
[6] | Chai Chunyan, Wang ting. Clinical analysis of three elderly patients with hypercalcemia and literature review [J]. Clinical Focus, 2023, 38(2): 166-169. |
[7] | . [J]. Clinical Focus, 2022, 37(11): 1044-1047. |
[8] | Zhang Shu, Bao Yun, Chen Fang, Shan Qing. Predictive value of body composition and anthropometry for dyslipidemia in postmenopausal women [J]. Clinical Focus, 2022, 37(8): 708-712. |
[9] | . [J]. Clinical Focus, 2022, 37(7): 658-662. |
[10] | . [J]. Clinical Focus, 2022, 37(5): 477-480. |
[11] | . [J]. Clinical Focus, 2022, 37(1): 66-71. |
[12] | Cui Qingyang, Liu Juan, Cao Yinli, Zhang Chunyan, Wang Xicheng. Ornithine carbamoyltransferase deficiency caused by one female newborn: A case report and literature review [J]. Clinical Focus, 2021, 36(12): 1128-1131. |
[13] | Zhao Wei, Luo Lan, Li Shen, Dong Yingying, Li Xinyu, Gao Zhengnan. TG/HDL-C, TyG and non-HDL-C in predition of metabolic syndrome incidence in middle-aged and elderly women [J]. Clinical Focus, 2021, 36(9): 790-794. |
[14] | Li Yaru, Zhao Haiying, Ji Xiaoyi, Wang Menglin, Wang Hao, Li Ling, Jiang Ling, Wang Xinyu. Correlation between serum uric acid and catecholamines in college students [J]. Clinical Focus, 2021, 36(4): 357-360. |
[15] | Lyu Yixuan, Lu Zhanfei, Sun Nianzhe, Li Fuhan, Liu Rong. Systematic review on the efficacy of dual-energy CT and ultrasound in the diagnosis of gout [J]. Clinical Focus, 2021, 36(1): 5-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||