Clinical Focus ›› 2025, Vol. 40 ›› Issue (8): 753-757.doi: 10.3969/j.issn.1004-583X.2025.08.015
Previous Articles Next Articles
Received:
2025-07-09
Online:
2025-08-20
Published:
2025-09-05
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.08.015
[1] |
Zarbock A, Nadim MK, Pickkers P, et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup[J]. Nat Rev Nephrol, 2023, 19(6):401-417.
doi: 10.1038/s41581-023-00683-3 pmid: 36823168 |
[2] | Takeuchi T, Flannery AH, Liu LJ, et al. Epidemiology of sepsis-associated acute kidney injury in the ICU with contemporary consensus definitions[J]. Crit Care, 2025, 29(1):128. |
[3] | Pais T, Jorge S, Lopes JA. Acute kidney injury in sepsis[J]. Int J Mol Sci, 2024, 25(11):5924. |
[4] | Wang T, Huang Y, Zhang X, et al. Advances in metabolic reprogramming of renal tubular epithelial cells in sepsis-associated acute kidney injury[J]. Front Physiol, 2024,15:1329644. |
[5] | Dyck B, Unterberg M, Adamzik M, et al. The impact of pathogens on sepsis prevalence and outcome[J]. Pathogens, 2024, 13(1):89. |
[6] | Nath S, Balling R. The Warburg effect reinterpreted 100 yr on: A first-principles stoichiometric analysis and interpretation from the perspective of ATP metabolism in cancer cells[J]. Function (Oxf), 2024, 5(3):zqae008. |
[7] | Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: From glycolysis to lactylation[J]. Front Immunol, 2023,14:1211221. |
[8] | Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney injury: Medical causes and pathogenesis[J]. J Clin Med, 2023, 12(1):375. |
[9] | Liu J, Cheng Y, Zhang X, et al. Glycosyltransferase Extl1 promotes CCR7-mediated dendritic cell migration to restrain infection and autoimmunity[J]. Cell Rep, 2023, 42(1):111991. |
[10] | Sukonina V, Ma H, Zhang W, et al. FOXK1 and FOXK2 regulate aerobic glycolysis[J]. Nature, 2019, 566(7743): 279-283. |
[11] | Zhou L, Li H, Hu J, et al. Plasma oxidative lipidomics reveals signatures for sepsis-associated acute kidney injury[J]. Clin Chim Acta, 2023, 551: 117616. |
[12] | Gong N, Wang W, Fu Y, et al. The crucial role of metabolic reprogramming in driving macrophage conversion in kidney disease[J]. Cell Mol Biol Lett, 2025, 30(1): 72. |
[13] |
Liu TF, Vachharajani VT, Yoza BK, et al. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response[J]. J Biol Chem, 2012, 287(31):25758-25769.
doi: 10.1074/jbc.M112.362343 pmid: 22700961 |
[14] |
Zhong L, D'Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α[J]. Cell, 2010, 140(2): 280-293.
doi: 10.1016/j.cell.2009.12.041 pmid: 20141841 |
[15] | Chu W, Sun X, Yan Y. Study on the regulation of renal tubular cell apoptosis by SIRT1/NF-κB signaling pathway in septic acute kidney injury[J]. Ren Fail, 2025, 47(1): 2499904. |
[16] | Tan C, Gu J, Li T, et al. Inhibition of aerobic glycolysis alleviates sepsis? induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK-regulated autophagy[J]. Int J Mol Med, 2021, 47(3):19. |
[17] | Gómez H. Reprogramming metabolism to enhance kidney tolerance during sepsis: The role of fatty acid oxidation, aerobic glycolysis, and epithelial de-differentiation[J]. Nephron, 2023, 147(1):31-34. |
[18] |
Lee LE, Doke T, Mukhi D, et al. The key role of altered tubule cell lipid metabolism in kidney disease development[J]. Kidney Int, 2024, 106(1):24-34.
doi: 10.1016/j.kint.2024.02.025 pmid: 38614389 |
[19] | Kocemba-Pilarczyk KA, Ostrowska B, Trojan SE, et al. Deciphering enemy tactics-the narrow path to an optimal anti-cancer strategy targeting the Warburg effect[J]. Pharmacol Rep, Published online August 1, 2025. |
[20] | Pomeyie K, Abrokwah F, Boison D, et al. Macrophage immunometabolism dysregulation and inflammatory disorders[J]. Biomed Pharmacother, 2025,188:118142. |
[21] | Xu S, Deng KQ, Lu C, et al. Interleukin-6 classic and trans-signaling utilize glucose metabolism reprogramming to achieve anti-or pro-inflammatory effects[J]. Metabolism, 2024,155:155832. |
[22] |
Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas[J]. J Clin Invest, 2012, 122(3):787-795.
doi: 10.1172/JCI59643 pmid: 22378047 |
[23] | Lv Y, Li Z, Liu S, et al. Metabolic checkpoints in immune cell reprogramming: Rewiring immunometabolism for cancer therapy[J]. Mol Cancer, 2025, 24(1):210. |
[24] | 张霖柯, 赵志伶, 李廷翠, 等. 巨噬细胞在脓毒性心肌病发病机制中的作用[J]. 中华危重病急救医学, 2025, 37(3): 305-309. |
[25] | Ma H, Gao L, Chang R, et al. Crosstalk between macrophages and immunometabolism and their potential roles in tissue repair and regeneration[J]. Heliyon, 2024, 10(18):e38018. |
[26] | Van den Bossche J, Baardman J, de Winther MP. Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis[J]. J Vis Exp, 2015,(105):53424. |
[27] | Cao Q, Huang C, Yi H, et al. A single-domain i-body, AD-114, attenuates renal fibrosis through blockade of CXCR4[J]. JCI Insight, 2022, 7(4):e143018. |
[28] |
Ni Y, Wu GH, Cai JJ, et al. Tubule-mitophagic secretion of SerpinG1 reprograms macrophages to instruct anti-septic acute kidney injury efficacy of high-dose ascorbate mediated by NRF2 transactivation[J]. Int J Biol Sci, 2022, 18(13):5168-5184.
doi: 10.7150/ijbs.74430 pmid: 35982894 |
[29] | Sun Z, Lv R, Zhao Y, et al. Communications between neutrophil-endothelial interaction in immune defense against bacterial infection[J]. Biology (Basel), 2024, 13(6):374. |
[30] | Aklilu A, Lai MS, Jiang Z, et al. Immunothrombosis in sepsis: Cellular crosstalk, molecular triggers, and therapeutic opportunities-A review[J]. Int J Mol Sci, 2025, 26(13):6114. |
[31] | Shaoqun T, Xi Y, Wei W, et al. Neutrophil extracellular traps-related genes contribute to sepsis-associated acute kidney injury[J]. BMC Nephrol, 2025, 26(1):235. |
[32] | Chen S, Zhang Q, Sun L, et al. HP promotes neutrophil inflammatory activation by regulating PFKFB2 in the glycolytic metabolism of sepsis[J]. PLoS One, 2024, 19(1):e0296266. |
[33] | Huang P, Liu Y, Li Y, et al. Correction: Metabolomics-and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury[J]. BMC Med, 2025, 23(1):143. |
[34] | Smith JA, Stallons LJ, Schnellmann RG. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury[J]. Am J Physiol Renal Physiol, 2014, 307(4):F435-F444. |
[35] |
Jaiswal A, Singh R. A negative feedback loop underlies the Warburg effect[J]. NPJ Syst Biol Appl, 2024, 10(1):55.
doi: 10.1038/s41540-024-00377-x pmid: 38789545 |
[36] | 徐丽, 孙鹏. 脓毒症相关性急性肾损伤的识别和管理[J]. 中华危重病急救医学, 2023, 35(2): 221-224. |
[37] | Fang T, Ma C, Zhang Z, et al. Roxadustat, a HIF-PHD inhibitor with exploitable potential on diabetes-related complications[J]. Front Pharmacol, 2023,14:1088288. |
[38] | Harris E. FDA approves first oral treatment for kidney disease-induced anemia[J]. JAMA, 2023, 329(9):704. |
[39] | Qiao J, Tan Y, Liu H, et al. Histone H3K18 and ezrin lactylation promote renal dysfunction in sepsis-associated acute kidney injury[J]. Adv Sci (Weinh), 2024, 11(28):e2307216. |
[40] | Ishihara SI, Kayes MI, Makino H, et al. The PKM2 activator TEPP-46 suppresses cellular senescence in hydrogen peroxide-induced proximal tubular cells and kidney fibrosis in CD-1db/db mice[J]. J Diabetes Investig, 2025, 16(4):598-607. |
[41] |
Luo P, Zhang Q, Zhong TY, et al. Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect[J]. Mil Med Res, 2022, 9(1):22.
doi: 10.1186/s40779-022-00381-4 pmid: 35596191 |
[42] |
Iajun W, Kaifeng G, Jing Z. Urinary PKM2, a marker predicating acute kidney injury in patients with sepsis[J]. Int Urol Nephrol, 2024, 56(9):3039-3045.
doi: 10.1007/s11255-024-04054-0 pmid: 38635124 |
[43] |
Xie W, He Q, Zhang Y, et al. Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury[J]. Cell Death Dis, 2023, 14(10):663.
doi: 10.1038/s41419-023-06195-z pmid: 37816709 |
[44] | Sun C, Xiong H, Guo T. β-nicotinamide mononucleotide alleviates sepsis-associated acute kidney injury by activating NAD+/SIRT3 signaling[J]. Cell Biochem Biophys, 2025, 83(2):2089-2099. |
[45] | Dai Q, Zhang H, Tang S, et al. Vitamin D-VDR (vitamin D receptor) alleviates glucose metabolism reprogramming in lipopolysaccharide-induced acute kidney injury[J]. Front Physiol, 2023,14:1083643. |
[46] | Xu C, Hong Q, Zhuang K, et al. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition[J]. Metabolism, 2023,145:155592. |
[47] | Sun M, Wang F, Li H, et al. Maresin-1 attenuates sepsis-associated acute kidney injury via suppressing inflammation, endoplasmic reticulum stress and pyroptosis by activating the AMPK/SIRT3 pathway[J]. J Inflamm Res, 2024,17:1349-1364. |
[1] | Zhou Qiumei, Song Shaona, Liu Yan, Wang Wenhong. Pseudo-hypoaldosteronism caused by urinary tract anomaly complicated with infection: A case report and literature review [J]. Clinical Focus, 2025, 40(7): 639-642. |
[2] | Song Chenlu, Qi Xiaojing, Chen Yipeng, Xing Guangqun. Association of poor living habits and smoking with primary membranous nephropathy [J]. Clinical Focus, 2025, 40(6): 513-518. |
[3] | Zhang Hongtao, Zhong Meijiao, Gao Jingyang, Li Shijie, Yu Naxin, Fan Xin, Chen Lining, Zhang Yang, Wang Zhikui, Bian Aishu. The potential of hepcidin/serum ferritin ratio in assessing anemia in patients with maintenance peritoneal dialysis [J]. Clinical Focus, 2025, 40(5): 434-438. |
[4] | Zhao Hui, Zhang Pengwei, Zhang Jian, Huang Wenhui, Li Xiaoli, Ma Zhigang, Jin Fang, Tian Limin. IgA-dominant infection-related glomerulonephritis with oxalate deposition: A case report and literature review [J]. Clinical Focus, 2025, 40(2): 162-167. |
[5] | Zhang Hui, Zhang Wenbo, Liang Wenqi, Huo Yanhong. Idiopathic renal hypouricemia combined with repeated acute kidney injury: A case report and literature review [J]. Clinical Focus, 2025, 40(2): 168-171. |
[6] | Pu Qian, Cheng Gang, Dao Jiecao, Qi Zizhao, Dou Lele, Zhao Junfang, Zhang Wenjun, Guo Caixia, Wang Yingying. Risk factors for constipation in patients with chronic kidney disease in Gansu province: a single-center study [J]. Clinical Focus, 2025, 40(1): 44-53. |
[7] | Liu Yi, Zhao Haotian, Wang Xiaona, Liu Yuanlin, Li Li, Wang Zekai. Application value of right heart ultrasound combined with renal vascular doppler score in patients with end-stage renal disease during dialysis [J]. Clinical Focus, 2025, 40(1): 54-59. |
[8] | Guo Xiaocui, Yu Xiaojuan, Shen Xia, Ye Shuiying, Zhou Dongchi, Lai Bihong. Effect of a multidisciplinary intervention on the quality of life in maintenance hemodialysis patients [J]. Clinical Focus, 2024, 39(9): 803-807. |
[9] | . [J]. Clinical Focus, 2024, 39(9): 847-850. |
[10] | Sun Shuaigang, Zhai Yaling, Zhang Wenhui, Tian Huijuan. Tonsillectomy as a therapy for patients with IgA nephropathy: A meta-analysis [J]. Clinical Focus, 2024, 39(3): 197-207. |
[11] | . [J]. Clinical Focus, 2024, 39(2): 183-187. |
[12] | Yang Xingmeng, Ma Xiaoying, Sheng Yuping, Liu Ye, Zhang Haoran, Xu Haiping, Wang Na, Sun Fuyun. Correlation between homocysteine and abdominal aortic calcification in non-dialysis patients with stage 5 chronic kidney disease [J]. Clinical Focus, 2024, 39(1): 30-33. |
[13] | Dong Hui, Huang Wenhui, Zhao Hui, Qian Rui. Adult Bartter syndrome complicated with acute exacerbation of chronic renal insufficiency: A case report [J]. Clinical Focus, 2023, 38(11): 1022-1026. |
[14] | Liu Yan, Liu Qiong, Liang Xiaomei, Liu Bing. Secondary infection of spontaneous perirenal hemorrhage with fever as the main symptom: A case report and literature review [J]. Clinical Focus, 2023, 38(9): 823-826. |
[15] | Wang Tao, Gao Yuwei, Wang Xinghua, Hu Xiuhong, Cui Hongrui, Xu Baozhen, Yang Hongjuan. Correlation of anti-phospholipase A2 receptor antibody with idiopathic membranous nephropathy [J]. Clinical Focus, 2023, 38(7): 606-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||