Clinical Focus ›› 2025, Vol. 40 ›› Issue (8): 726-730.doi: 10.3969/j.issn.1004-583X.2025.08.010
Previous Articles Next Articles
Zhao Wei, Xu Huijuan, Zhao Yanxia, Wang Lingzhen, Lu Yuan, Yang Jing()
Received:
2025-03-12
Online:
2025-08-20
Published:
2025-09-05
Contact:
Yang Jing
E-mail:jingjingyang2000@163.com
CLC Number:
Zhao Wei, Xu Huijuan, Zhao Yanxia, Wang Lingzhen, Lu Yuan, Yang Jing. Malignant osteopetrosis in infants: A case report and literature review[J]. Clinical Focus, 2025, 40(8): 726-730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lchc.cn/EN/10.3969/j.issn.1004-583X.2025.08.010
Fig.2 a.Chest CT: Increased bone density and local bone thickening changes in various components of the chest; b.Brain CT: Dilation of the supratentorial ventricular system, small patchy low-density shadows can be seen around the bilateral ventricles, with unclear boundaries; c.Brain MR: Bilateral frontal lobe volume is reduced, with wider sulci, and wider supratentorial ventricles. Sharp cerebellar tonsils and crowded foramen magnum are seen; d.DR: upright position of bilateral wrist joints: increased bone density in both radius, ulna, and hands, and changes in bone expansion in the distal radius and ulna;e.Pelvic DR upright position: Increased bone density in pelvic bones and bilateral femurs, with concentric changes in bilateral iliac wings.
基因(组) | 遗传模式 | 染色体位置 | 转录本 | 变异命 | 人群频率 | 合子状态 | ACMG分类 | 变异来源 |
---|---|---|---|---|---|---|---|---|
TCIRG1 | AR | Chr11:68045051 | NM_006019.4 | c.1114C>T(p.Q372*) | - | 杂合 | 致病变异Pathogenic | 父亲(杂合) |
TCIRG1 | AR | Chr11:68047564 | NM_006019.4 | c.1297C>T(p.Q433*) | <0.0001 | 杂合 | 致病变异Pathogenic | 母亲(杂合) |
Tab.1 Sources of genetic variations in the infant
基因(组) | 遗传模式 | 染色体位置 | 转录本 | 变异命 | 人群频率 | 合子状态 | ACMG分类 | 变异来源 |
---|---|---|---|---|---|---|---|---|
TCIRG1 | AR | Chr11:68045051 | NM_006019.4 | c.1114C>T(p.Q372*) | - | 杂合 | 致病变异Pathogenic | 父亲(杂合) |
TCIRG1 | AR | Chr11:68047564 | NM_006019.4 | c.1297C>T(p.Q433*) | <0.0001 | 杂合 | 致病变异Pathogenic | 母亲(杂合) |
[1] |
Capo V, Penna S, Merelli I, et al. Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis[J]. Haematologica, 2021, 106(1): 74-86.
doi: 10.3324/haematol.2019.238261 pmid: 31949009 |
[2] |
Yang Y, Ye W, Guo J, et al. CLCN7 and TCIRG1 mutations in a single family: Evidence for digenic inheritance of osteopetrosis[J]. Mol Med Rep, 2019, 19(1): 595-600.
doi: 10.3892/mmr.2018.9648 pmid: 30431110 |
[3] | Liang H, Li N, Yao RE, et al. Clinical and molecular characterization of five Chinese patients with autosomal recessive osteopetrosis[J]. Mol Genet Genomic Med, 2021, 9(11): e1815. |
[4] | Spinnato P, Pedrini E, Petrera MR, et al. Spectrum of skeletal imaging features in osteopetrosis: Inheritance pattern and radiological associations[J]. Genes, 2022, 13(11). |
[5] |
Yuan P, Yue Z, Sun L, et al. Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients[J]. J Bone Miner Metab, 2011, 29(2): 251-256.
doi: 10.1007/s00774-010-0228-6 pmid: 21042819 |
[6] |
Wu CC, Econs MJ, Dimeglio LA, et al. Diagnosis and management of osteopetrosis: Consensus guidelines from the osteopetrosis working group[J]. J Clin Endocrinol Metab, 2017, 102(9): 3111-3123.
doi: 10.1210/jc.2017-01127 pmid: 28655174 |
[7] | Schulz A, Moshous D. Hematopoietic stem cell transplantation, a curative approach in infantile osteopetrosis[J]. Bone, 2023, 167: 116634. |
[8] | Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: Mechanisms and treatments[J]. Dis Model Mech, 2021, 14(5). |
[9] | Ewanchuk BW, Arnold CR, Balce DR, et al. A non-immunological role for γ-interferon-inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption[J]. Sci Adv, 2021, 7(17):eabd3684. |
[10] |
Xian X, Moraghebi R, Löfvall H, et al. Generation of gene-corrected functional osteoclasts from osteopetrotic induced pluripotent stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 179.
doi: 10.1186/s13287-020-01701-y pmid: 32414402 |
[11] |
Cappariello A, Paone R, Maurizi A, et al. Biotechnological approach for systemic delivery of membrane Receptor Activator of NF-κB Ligand (RANKL) active domain into the circulation[J]. Biomaterials, 2015, 46: 58-69.
doi: 10.1016/j.biomaterials.2014.12.033 pmid: 25678116 |
[12] | Jacome-Galarza CE, Percin GI, Muller JT, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts[J]. Nature, 2019, 568(7753): 541-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||