临床荟萃 ›› 2024, Vol. 39 ›› Issue (3): 259-263.doi: 10.3969/j.issn.1004-583X.2024.03.011
孙庆1, 王海龙2a, 米庆2a, 乐暾2b, 牟华明2a()
收稿日期:
2023-10-17
出版日期:
2024-03-20
发布日期:
2024-06-12
通讯作者:
牟华明
E-mail:mouhm2002@aliyun.com
基金资助:
Received:
2023-10-17
Online:
2024-03-20
Published:
2024-06-12
摘要:
心力衰竭(heart failure,HF)是各种心血管疾病的终末阶段,具有较高的发病率以及致死率。外泌体可以通过影响肾素-血管紧张素系统、心肌纤维化、心肌细胞凋亡、新生血管生成等多方面参与HF的发生与发展。外泌体不但可以作为HF的诊断标志物,而且能够作为靶向药物递送或干细胞治疗的载体助力于HF的治疗。本文就外泌体在HF发生发展中的作用、诊断以及治疗研究进展进行综述。
中图分类号:
孙庆, 王海龙, 米庆, 乐暾, 牟华明. 外泌体在心力衰竭发生发展中的作用及临床价值[J]. 临床荟萃, 2024, 39(3): 259-263.
[1] | Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: A report of the heart failure society of america, heart failure association of the european society of cardiology, japanese heart failure society and writing committee of the universal definition of heart failure[J]. J Card Fail, 2021, Mar1:S1071- 9164(21)00050-6. Online ahead of print |
[2] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2021》概述[J]. 中国心血管病研究, 2022, 20(7): 577-596. |
[3] | Li H, Gu J, Sun X, et al. Isolation of swine bone marrow lin-/CD45-/CD133+ cells and cardio-protective effects of its exosomes[J]. Stem Cell Rev Rep, 2023, 19(1): 213-229. |
[4] | Luo Z, Hu X, Wu C, et al. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model[J]. Br J Anaesth, 2023, 130(1): 29-38. |
[5] | Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and cardioprotective effectors[J]. Vascul Pharmacol, 2020, 135:106790. |
[6] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. |
[7] |
Yao J, Huang K, Zhu D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano, 2021, 15(7): 11099-11111.
doi: 10.1021/acsnano.1c00628 pmid: 34152126 |
[8] |
Lyu L, Wang H, Li B, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes[J]. J Mol Cell Cardiol, 2015, 89(Pt B): 268-279.
doi: 10.1016/j.yjmcc.2015.10.022 pmid: 26497614 |
[9] |
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5): 2136-2146.
doi: 10.1172/JCI70577 pmid: 24743145 |
[10] | Xiao M, Zeng W, Wang J, et al. Exosomes protect against acute myocardial infarction in rats by regulating the renin-angiotensin system[J]. Stem Cells Dev, 2021, 30(12): 622-631. |
[11] | Moita MR, Silva MM, Diniz C, et al. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis[J]. Front Cardiovasc Med, 2022, 9:1015473. |
[12] | 何亚州. 温中益气方对来源于外泌体的miR-320a调控PIK3CA防治慢性心力衰竭心肌纤维化的研究[D]. 南宁: 广西中医药大学, 2019. |
[13] | Li J, Salvador AM, Li G, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res, 2021, 128(1): e1-e23. |
[14] | Vaskova E, Ikeda G, Tada Y, et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal mir-181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc, 2020, 9(13): e015640. |
[15] |
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125-137.
doi: S0022-2828(18)30140-8 pmid: 29698635 |
[16] |
Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine[J]. Theranostics, 2023, 13(2): 685-703.
doi: 10.7150/thno.73568 pmid: 36632217 |
[17] |
Hou Z, Qin X, Hu Y, et al. Longterm exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection[J]. Circ Res, 2019, 124(9): 1386-1400.
doi: 10.1161/CIRCRESAHA.118.314635 pmid: 30879399 |
[18] | Sun C, Li W, Li Y, et al. MiR-182-5p mediated by exosomes derived from bone marrow mesenchymal stem cell attenuates inflammatory responses by targeting tlr4 in a mouse model of myocardial infraction[J]. Immune Netw, 2022, 22(6): e49. |
[19] |
Hu C, Liao J, Huang R, et al. MicroRNA-155-5p in serum derived-exosomes promotes ischaemia-reperfusion injury by reducing CypD ubiquitination by NEDD4[J]. ESC Heart Fail, 2023, 10(2):1144-1157.
doi: 10.1002/ehf2.14279 pmid: 36631006 |
[20] | Ranjan P, Kumari R, Goswami SK, et al. Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction[J]. Front Cardiovasc Med, 2021, 8:676267. |
[21] |
Qiao L, Hu S, Liu S, et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest, 2019, 129(6): 2237-2250.
doi: 10.1172/JCI123135 pmid: 31033484 |
[22] | Liu H, Zhang Y, Yuan J, et al. Dendritic cell-derived exosomal miR-494-3p promotes angiogenesis following myocardial infarction[J]. Int J Mol Med, 2021, 47(1): 315-325. |
[23] | 李光召. 肥厚心肌细胞来源外泌体miR-29a调控内皮细胞血管新生机制的研究[D]. 珠海: 遵义医科大学, 2020. |
[24] | Liu S, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22. |
[25] |
Wu T, Chen Y, Du Y, et al. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure[J]. J Thorac Dis, 2018, 10(11): 6211-6220.
doi: 10.21037/jtd.2018.10.52 pmid: 30622793 |
[26] | Wang L, Liu J, Xu B, et al. Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure[J]. Kaohsiung J Med Sci, 2018, 34(11): 626-633. |
[27] | Lu W, Liu X, Zhao L, et al. MiR-22-3p in exosomes increases the risk of heart failure after down-regulation of FURIN[J]. Chem Biol Drug Des, 2023, 101(3):550-567. |
[28] |
Xie Y, Hang JZ, Zhang N, et al. Clinical significance of MiR-27a expression in serum exosomes in patients with heart failure[J]. Cell Mol Biol (Noisy-le-grand), 2022, 67(5): 324-331.
doi: 10.14715/cmb/2021.67.5.44 pmid: 35818236 |
[29] | 赵娟, 刘婷, 魏红, 等. 血浆外泌体微小RNA-206和N末端B型脑钠肽前体及同型半胱氨酸在心力衰竭患者中的表达水平及应用价值[J]. 中国医药, 2022, 17(9): 1326-1330. |
[30] | 孙晓燕, 亓良森, 赵海鸿, 等. 血清外泌体miR-122及miR-194在心肌梗死患者中诊断早期心衰的价值[J]. 解放军医学院学报, 2021, 42(9): 940-945. |
[31] |
Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res, 2013, 113(3): 322-326.
doi: 10.1161/CIRCRESAHA.113.301209 pmid: 23743335 |
[32] | Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo[J]. Sci Rep, 2019, 9(1): 10041. |
[33] |
Yan F, Cui W, Chen Z. Mesenchymal stem cell-derived exosome-loaded microRNA-129-5p inhibits TRAF3 expression to alleviate apoptosis and oxidative stress in heart failure[J]. Cardiovasc Toxicol, 2022, 22(7): 631-645.
doi: 10.1007/s12012-022-09743-9 pmid: 35546649 |
[34] | Xiong Y, Tang R, Xu J, et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway[J]. Stem Cell Res Ther, 2022, 13(1): 289. |
[35] | Gao L, Wang L, Wei Y, et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine[J]. Sci Transl Med, 2020, 12(561):eaay1318. |
[36] | Davidson SM, Riquelme JA, Zheng Y, et al. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning[J]. Sci Rep, 2018, 8(1): 15885. |
[37] | Li Q, Huang Z, Wang Q, et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes[J]. Biomaterials, 2022, 284:121529. |
[38] |
Cheng G, Zhu D, Huang K, et al. Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure[J]. J Mol Cell Cardiol, 2022, 169:113-121.
doi: 10.1016/j.yjmcc.2022.04.020 pmid: 35523270 |
[39] | Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions[J]. Adv Drug Deliv Rev, 2021, 176:113872. |
[40] | Kim JY, Rhim WK, Yoo YI, et al. Defined MSC exosome with high yield and purity to improve regenerative activity[J]. J Tissue Eng, 2021, 12:20417314211008626. |
[1] | 卢远思, 吕见君, 官计彬, 操龙斌. 双相情感障碍患者外周血中FGF1的表达与糖脂代谢的相关性[J]. 临床荟萃, 2025, 40(7): 619-623. |
[2] | 孙振晓, 于相芬. 皮肤搔抓障碍的研究进展[J]. 临床荟萃, 2025, 40(7): 647-652. |
[3] | 毛静静, 兰云霞, 陈鲁玉, 宋先荣. A型主动脉夹层合并肠系膜上动脉缺血的研究进展[J]. 临床荟萃, 2025, 40(7): 659-662. |
[4] | 何媛, 王俭. 特发性脊柱侧凸患者神经与结构影像相关改变的研究进展[J]. 临床荟萃, 2025, 40(7): 669-672. |
[5] | 曹丽卉, 霍祥辉. NT-proBNP、甘油三酯葡萄糖乘积指数联合超声心动图指标对老年心力衰竭的临床诊断价值[J]. 临床荟萃, 2025, 40(6): 498-503. |
[6] | 林彬城, 林刚曦. 病因、术前病程对药物难治性癫痫患儿疗效的影响[J]. 临床荟萃, 2025, 40(6): 527-531. |
[7] | 王思晗, 李向红, 李亮亮, 锡洪敏, 杨萍, 马丽丽, 尹向云. 新生儿RYR1相关肌病1例并文献复习[J]. 临床荟萃, 2025, 40(6): 541-546. |
[8] | 潘凌峰, 林芳芳, 杨川. 人工智能在前列腺癌超声诊断中的应用[J]. 临床荟萃, 2025, 40(6): 547-552. |
[9] | 李云翔, 李淑琼, 丁雪, 王思博, 王建军. TLR2与肺炎支原体感染及药物治疗的研究进展[J]. 临床荟萃, 2025, 40(6): 553-557. |
[10] | 孙振晓, 于相芬. 幻肢痛的临床治疗进展[J]. 临床荟萃, 2025, 40(6): 570-576. |
[11] | 刘萍, 于猛, 刘明新, 李文锋. 血常规衍生的新型炎症指标与急性前壁ST段抬高型心肌梗死患者PCI术后院内发生不良心血管事件的相关性[J]. 临床荟萃, 2025, 40(5): 400-407. |
[12] | 赵雅静, 陶千山, 沈元元, 董毅. 地西他滨维持治疗对适合强化疗中低危急性髓细胞白血病患者生存的影响[J]. 临床荟萃, 2025, 40(5): 439-444. |
[13] | 范玉雯, 宋佳, 黄盼娜, 张晓岚. 淋巴细胞归巢在炎症性肠病中的作用及相关治疗靶点[J]. 临床荟萃, 2025, 40(5): 468-472. |
[14] | 赵世亮, 牛艳国, 赵燕民, 李俊青, 洪丽, 王献. 颅内动脉瘤介入术后认知功能障碍的因素探讨:基于PSM法[J]. 临床荟萃, 2025, 40(4): 320-324. |
[15] | 苏淼, 王飒爽, 赵东强. 《中国肥胖症消化内镜治疗专家共识》解读[J]. 临床荟萃, 2025, 40(4): 366-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||