胰高糖素样肽-1受体激动剂改善肥胖致雄性生殖功能下降的作用机制
收稿日期: 2022-05-10
网络出版日期: 2022-08-30
肥胖可以通过诱发瘦素抵抗、诱导炎症和氧化应激等多种机制影响中央和外周的下丘脑-垂体-性腺轴,导致雄性生殖功能下降,包括精子发生改变、精子数量减少、精子DNA凋亡增加、性腺功能减退、睾酮合成和分泌减少、勃起功能障碍等。近期,研究发现胰高糖素样肽-1受体激动剂通过作用于性腺轴在改善肥胖所致雄性生殖功能下降方面有着巨大的潜力,但其作用机制尚未完全阐明。本研究通过对胰高糖素样肽-1受体激动剂改善肥胖致雄性生殖功能下降的作用机制进行综述,旨在为临床诊治提供理论依据。
关键词: 肥胖症; 不育, 男(雄)性; 胰高糖素样肽-1受体激动剂
贾卓雅 , 陈晓依 , 陈树春 . 胰高糖素样肽-1受体激动剂改善肥胖致雄性生殖功能下降的作用机制[J]. 临床荟萃, 2022 , 37(7) : 658 -662 . DOI: 10.3969/j.issn.1004-583X.2022.07.015
[1] | Zhu Z, Tang Y, Zhuang J, et al. Physical activity, screen viewing time, and overweight/obesity among Chinese children and adolescents: An update from the 2017 physical activity and fitness in China-the youth study[J]. BMC Public Health, 2019, 19(1):197. |
[2] | Ye J, Luo D, Xu X, et al. Metformin improves fertility in obese males by alleviating oxidative stress-induced blood-testis barrier damage[J]. Oxid Med Cell Longev, 2019, 2019:9151067. |
[3] | Jensterle M, Janez A, Fliers E, et al. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective[J]. Human Reproduction Update, 2019, 25(4): 504-517. |
[4] | Izzi-Engbeaya C, Jones S, Crustna Y, et al. Effects of glucagon-like peptide-1 on the reproductive axis in healthy men[J]. J Clin Endocrinol Metab, 2020, 105(4):1119-1125. |
[5] | Zhai LL, Zhao J, Bai YL, et al. Combined effects of obesity and di-(2-ethylhexyl) phthalate on testosterone levels and kisspeptin/GPR54 expression in hypothalamus and testes of male mice[J]. J Chin Med Assoc, 2020, 83(11): 1020-1028. |
[6] | Feng J, Xu R, Li Y, et al. The effect of high-fat diet and exercise on KISS-1/GPR54 expression in testis of growing rats[J]. Nutr Metab (Lond), 2021, 18(1): 1. |
[7] | Chang B, Song C, Gao H, et al. Leptin and inflammatory factors play a synergistic role in the regulation of reproduction in male mice through hypothalamic kisspeptin-mediated energy balance[J]. Reprod Biol Endocrinol, 2021, 19(1): 12. |
[8] | Zhai L, Zhao J, Zhu Y, et al. Downregulation of leptin receptor and kisspeptin/GPR54 in the murine hypothalamus contributes to male hypogonadism caused by high-fat diet-induced obesity[J]. Endocrine, 2018, 62(1): 195-206. |
[9] | 柳成荫, 刘倩男, 赵剑,等. 膳食诱导肥胖小鼠睾丸JAK2/STAT3蛋白表达变化研究[J]. 实用预防医学, 2018, 25(12): 1413-1416. |
[10] | Yi X, Gao H, Chen D, et al. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 312(4):R501-R510. |
[11] | Salas-Huetos A, Maghsoumi-Norouzabad L, James ER, et al. Male adiposity, sperm parameters and reproductive hormones: An updated systematic review and collaborative meta-analysis[J]. Obes Rev, 2021, 22(1): e13082. |
[12] | Yang C, Li P, Li Z. Clinical application of aromatase inhibitors to treat male infertility[J]. Hum Reprod Update, 2021, 28(1):30-50. |
[13] | Lautenbach A, Stoll F, Mann O, et al. Long-term improvement of chronic low-grade inflammation after bariatric surgery[J]. Obes Surg, 2021, 31(7): 2913-2920. |
[14] | Fan W, Xu Y, Liu Y, et al. Obesity or overweight, a chronic inflammatory status in male reproductive system, leads to mice and human subfertility[J]. Front Physiol, 2018, 8: 1117. |
[15] | Yi X, Tang D, Cao S, et al. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice[J]. Oxid Med Cell Longev, 2020, 2020:3071658. |
[16] | Abbasihormozi SH, Babapour V, Kouhkan A, et al. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential[J]. Cell J, 2019, 21(3): 307-313. |
[17] | Lu Y, Li Y, Sun Y, et al. Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high-fat diet[J]. Food Sci Nutr, 2021, 9(3): 1603-1613. |
[18] | Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity[J]. Clin Sci (Lond), 2021, 135(6): 731-752. |
[19] | 焦涛. 高脂饮食诱导的脂肪组织白色化对小鼠生精微环境的影响及其调控机制研究[D]. 北京: 协和医学院, 2019. |
[20] | Leisegang K, Almaghrawi W, Henkel R. The effect of Nigella sativa oil and metformin on male seminal parameters and testosterone in Wistar rats exposed to an obesogenic diet[J]. Biomed Pharmacother, 2021: 133111085. |
[21] | Maghsoumi-Norouzabad L, Zare Javid A, Aiiashi S, et al. The impact of obesity on various semen parameters and sex hormones in Iranian men with infertility: A cross-sectional study[J]. Res Rep Urol, 2020, 12:357-365. |
[22] | Bag S, Akbas F. The impact of obesity on sexual functions and dyadic consensus in patients with obesity[J]. Metab Syndr Relat Disord, 2020, 18(6):308-312. |
[23] | Keleidari B, Mohammadi Mofrad R, Shahabi Shahmiri S, et al. The impacts of gastroileostomy rat model on glucagon-like peptide-1: A promising model to control type 2 diabetes mellitus[J]. Obes Surg, 2018, 28(10):3246-3252. |
[24] | Hunt B, Kragh N, McConnachie CC, et al. Long-term cost-effectiveness of two GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus in the Italian setting: Liraglutide versus lixisenatide[J]. Clin Ther, 2017, 39(7):1347-1359. |
[25] | Jensterle M, Podbregar A, Goricar K, et al. Effects of liraglutide on obesity-associated functional hypogonadism in men[J]. Endocr Connect, 2019, 8(3): 195-202. |
[26] | Rago V, De Rose D, Santoro M, et al. Human sperm express the receptor for glucagon-like peptide-1 (GLP-1), which affects sperm function and metabolism[J]. Endocrinology, 2020, 161(4):bqaa031. |
[27] | Arbabi L, Li Q, Henry BA, et al. Glucagon-like peptide-1 control of GnRH secretion in female sheep[J]. J Endocrinol, 2021, 248(3): 325-335. |
[28] | Vastagh C, Farkas I, Scott MM, et al. Networking of glucagon-like peptide-1 axons with GnRH neurons in the basal forebrain of male mice revealed by 3DISCO-based immunocytochemistry and optogenetics[J]. Brain Struct Funct, 2021, 226(1): 105-120. |
[29] | Kanasaki H, Tselmeg M, Oride A, et al. Pulsatile kisspeptin effectively stimulates gonadotropin-releasing hormone (GnRH)-producing neurons[J]. Gynecol Endocrinol, 2017, 33(9):721-727. |
[30] | Oride A, Kanasaki H, Mijiddorj T, et al. GLP-1 increases Kiss-1 mRNA expression in kisspeptin-expressing neuronal cells[J]. Biol Reprod, 2017, 97(2): 240-248. |
[31] | Heppner KM, Baquero AF, Bennett CM, et al. GLP-1R signaling directly activates arcuate nucleus Kisspeptin action in brain slices but does not rescue luteinizing hormone inhibition in ovariectomized mice during negative energy balance[J]. eNeuro, 2017, 4(1): ENEURO.0198-16.2016. |
[32] | Farkas I, Vastagh C, Farkas E, et al. Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways[J]. Front Cell Neurosci, 2016, 10:214. |
[33] | Maccarrone M, Rapino C, Francavilla F, et al. Cannabinoid signalling and effects of cannabis on the male reproductive system[J]. Nat Rev Urol, 2021, 18(1): 19-32. |
[34] | Bellefontaine N, Chachlaki K, Parkash J, et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction[J]. J Clin Invest, 2014, 124(6): 2550-2559. |
[35] | Han SY, McLennan T, Czieselsky K, et al. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion[J]. Proc Natl Acad Sci U S A, 2015, 112(42):13109-13114. |
[36] | Outeiriño-Iglesias V, Romaní-Pérez M, González-Matías LC, et al. GLP-1 increases preovulatory LH source and the number of mature follicles, as well as synchronizing the onset of puberty in female rats[J]. Endocrinology, 2015, 156(11): 4226-4237. |
[37] | Zhang E, Xu F, Liang H, et al. GLP-1 receptor agonist exenatide attenuates the detrimental effects of obesity on inflammatory profile in testis and sperm quality in mice[J]. Am J Reprod Immunol, 2015, 74(5): 457-466. |
[38] | Martins AD, Monteiro MP, Silva BM, et al. Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1[J]. Toxicol Appl Pharmacol, 2019:3621-8. |
[39] | Caltabiano R, Condorelli D, Panza S, et al. Glucagon-like peptide-1 receptor is expressed in human and rodent testis[J]. Andrology, 2020, 8(6): 1935-1945. |
[40] | Cannarella R, Calogero AE, Condorelli RA, et al. Is there a role for glucagon-like peptide-1 receptor agonists in the treatment of male infertility?[J]. Andrology, 2021, 9(5): 1499-1503. |
[41] | Oliveira PF, Cheng CY, Alves MG. Emerging role for mammalian target of rapamycin in male fertility[J]. Trends Endocrinol Metab, 2017, 28(3): 165-167. |
[42] | Yuan P, Ma D, Gao X, et al. Liraglutide ameliorates erectile dysfunction via regulating oxidative stress, the RhoA/ROCK pathway and autophagy in diabetes mellitus[J]. Front Pharmacol, 2020, 11:1257. |
/
〈 |
|
〉 |