| [1] |
Tang C, Cai J, Yin XM, et al. Mitochondrial quality control in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17(5): 299-318.doi: 10.1038/s41581-020-00369-0.
|
| [2] |
Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1): 32.doi: 10.1186/s40779-024-00536-5.
|
| [3] |
Williams R, Karuranga S, Malanda B, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2020, 162: 108072.doi: 10.1016/j.diabres.2020.108072.
|
| [4] |
Dai W, Lu H, Chen Y, et al. The loss of mitochondrial quality control in diabetic kidney disease[J]. Front Cell Dev Biol, 2021, 9: 706832.doi: 10.3389/fcell.2021.706832.
|
| [5] |
Thuy Linh H, Nakade Y, Wada T, et al. The potential mechanism of D-amino acids-mitochondria axis in the progression of diabetic kidney disease[J]. Kidney Int Rep, 2025, 10(2): 343-354.doi: 10.1016/j.ekir.2024.11.008.
|
| [6] |
Li L, Zhang Y, Chen Z, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury[J]. Heliyon, 2023, 9(11): e21695.doi: 10.1016/j.heliyon.2023.e21695.eCollection 2023 Nov.
|
| [7] |
Lv S, Zhang G, Lu Y, et al. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control[J]. Phytomedicine, 2024, 129: 155669.doi: 10.1016/j.phymed.2024.155669.
|
| [8] |
Huang C, Deng K, Wu M. Mitochondrial cristae in health and disease[J]. Int J Biol Macromol, 2023, 235: 123755.doi: 10.1016/j.ijbiomac.2023.123755.
|
| [9] |
Zhan M, Brooks C, Liu F, et al. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology[J]. Kidney Int, 2013, 83(4): 568-581.doi: 10.1038/ki.2012.441.
pmid: 23325082
|
| [10] |
von der Malsburg A, Sapp GM, Zuccaro KE, et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature, 2023, 620(7976): 1101-1108.doi: 10.1038/s41586-023-06441-6.
|
| [11] |
Han X, Wang J, Li R, et al. Placental mesenchymal stem cells alleviate podocyte injury in diabetic kidney disease by modulating mitophagy via the SIRT1-PGC-1alpha-TFAM pathway[J]. Int J Mol Sci, 2023, 24(5): 4696.doi: 10.3390/ijms24054696.
|
| [12] |
Picca A, Calvani R, Coelho-Junior HJ, et al. Cell death and inflammation: The role of mitochondria in health and disease[J]. Cells, 2021, 10(3): 537.doi: 10.3390/cells10030537.
|
| [13] |
Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome[J]. Nat Rev Mol Cell Biol, 2021, 22(1): 54-70.doi: 10.1038/s41580-020-00300-2.
|
| [14] |
Hammerling BC, Gustafsson AB. Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy[J]. J Mol Cell Cardiol, 2014, 75: 122-130.doi: 10.1016/j.yjmcc.2014.07.013.
pmid: 25086292
|
| [15] |
Muller L, Hoppe T. UPS-dependent strategies of protein quality control degradation[J]. Trends Biochem Sci, 2024, 49(10): 859-874.doi: 10.1016/j.tibs.2024.06.006.
|
| [16] |
Sutandy FXR, Gossner I, Tascher G, et al. A cytosolic surveillance mechanism activates the mitochondrial UPR[J]. Nature, 2023, 618(7966): 849-854.doi: 10.1038/s41586-023-06142-0.
|
| [17] |
Tao H, Zhu P, Xia W, et al. The emerging role of the mitochondrial respiratory chain in skeletal aging[J]. Aging Dis, 2024, 15(4): 1784-1812.doi: 10.14336/AD.2023.0924.
|
| [18] |
An Y, Xu BT, Wan SR, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction[J]. Cardiovasc Diabetol, 2023, 22(1): 237.doi: 10.1186/s12933-023-01965-7.
|
| [19] |
Chen Y, Kanwar YS, Chen X, et al. Aging and diabetic kidney disease: Emerging pathogenetic mechanisms and clinical implications[J]. Curr Med Chem, 2024, 31(6): 697-725.doi: 10.2174/0929867330666230621112215.
|
| [20] |
Baek J, Lee YH, Jeong HY, et al. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease[J]. Kidney Res Clin Pract, 2023, 42(5): 546-560.doi: 10.23876/j.krcp.22.233.
|
| [21] |
Zhan M, Usman IM, Sun L, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.doi: 10.1681/ASN.2014050457.
pmid: 25270067
|
| [22] |
Shen H, Ming Y, Xu C, et al. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy[J]. J Cell Physiol, 2019, 234(9): 15123-15133.doi: 10.1002/jcp.28153.
|
| [23] |
Yuan S, Liu X, Zhu X, et al. The role of TLR4 on PGC-1α-mediated oxidative stress in tubular cell in diabetic kidney disease[J]. Oxid Med Cell Longev, 2018, 2018: 6296802.doi: 10.1155/2018/6296802.
|
| [24] |
Yu Y, Jia YY, Li HJ. Sodium butyrate improves mitochondrial function and kidney tissue injury in diabetic kidney disease via the AMPK/PGC-1α pathway[J]. Ren Fail, 2023, 45(2): 2287129.doi: 10.1080/0886022X.2023.2287129.
|
| [25] |
Zeng Y, Guo M, Wu Q, et al. Gut microbiota-derived indole-3-propionic acid alleviates diabetic kidney disease through its mitochondrial protective effect via reducing ubiquitination mediated-degradation of SIRT1[J]. J Adv Res, 2025, 73:607-630. doi: 10.1016/j.jare.2024.08.018.
|
| [26] |
Zhou D, Zhou M, Wang Z, et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy[J]. Cell Death Dis, 2019, 10(7): 524.doi: 10.1038/s41419-019-1754-3.
|
| [27] |
Wang Y, Xu Y, Wang Q, et al. Sulforaphane ameliorated podocyte injury according to regulation of the Nrf2/PINK1 pathway for mitophagy in diabetic kidney disease[J]. Eur J Pharmacol, 2023, 958: 176042.doi: 10.1016/j.ejphar.2023.176042.
|
| [28] |
Deng Q, Wen R, Liu S, et al. Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission[J]. Cell Death Dis, 2020, 11(9): 814.doi: 10.1038/s41419-020-03022-7.
|
| [29] |
Ayanga BA, Badal SS, Wang Y, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy[J]. J Am Soc Nephrol, 2016, 27(9): 2733-2747.doi: 10.1681/ASN.2015101096.
pmid: 26825530
|
| [30] |
Hao Y, Fan Y, Feng J, et al. ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease[J]. Cell Commun Signal, 2024, 22(1): 26.doi: 10.1186/s12964-023-01399-4.
|
| [31] |
Cao Y, Chen Z, Hu J, et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J]. Front Cell Dev Biol, 2021, 9: 769213.doi: 10.3389/fcell.2021.769213.
|
| [32] |
Krishnan S, Manoharan J, Wang H, et al. CD248 induces a maladaptive unfolded protein response in diabetic kidney disease[J]. Kidney Int, 2023, 103(2): 304-319.doi: 10.1016/j.kint.2022.09.024.
|
| [33] |
Gong W, Song J, Liang J, et al. Reduced Lon protease 1 expression in podocytes contributes to the pathogenesis of podocytopathy[J]. Kidney Int, 2021, 99(4): 854-869.doi: 10.1016/j.kint.2020.10.025.
|
| [34] |
Yang T, Peng Y, Shao Y, et al. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling[J]. Phytomedicine, 2025, 138: 156411.doi: 10.1016/j.phymed.2025.156411.
|
| [35] |
Jeong HY, Kang JM, Jun HH, et al. Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy[J]. Sci Rep, 2018, 8(1): 8774.doi: 10.1038/s41598-018-26858-8.
|
| [36] |
Ding XQ, Jian TY, Gai YN, et al. Chicoric acid attenuated renal tubular injury in HFD-induced chronic kidney disease mice through the promotion of mitophagy via the Nrf2/PINK/Parkin pathway[J]. J Agric Food Chem, 2022, 70(9): 2923-2935.doi: 10.1021/acs.jafc.1c07795. Epub 2022 Feb 23.
|
| [37] |
Cleveland KH, Schnellmann RG. The β2-adrenergic receptor agonist formoterol restores mitochondrial homeostasis in glucose-induced renal proximal tubule injury through separate integrated pathways[J]. Biochem Pharmacol, 2023, 209: 115436.doi: 10.1016/j.bcp.2023.115436.Epub 2023 Jan 30.
|
| [38] |
Liu X, Xu C, Xu L, et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway[J]. Metabolism, 2020, 111: 154334.doi: 10.1016/j.metabol.2020.154334.Epub 2020 Aug 7.
|
| [39] |
Song Y, Yu H, Sun Q, et al. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease[J]. Front Pharmacol, 2022, 13: 1035755.doi: 10.3389/fphar.2022.1035755.eCollection 2022.
|
| [40] |
Jian Y, Yang Y, Cheng L, et al. Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1[J]. Cell Prolif, 2023, 56(2): e13362.doi: 10.1111/cpr.13362.Epub 2022 Nov 26.
|
| [41] |
Liu Y, Zhang L, Zhang S, et al. ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response[J]. Mol Med, 2023, 29(1): 57.doi: 10.1186/s10020-023-00651-4.
|
| [42] |
Wang X, Song M, Li X, et al. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease[J]. Am J Physiol Cell Physiol, 2023, 325(2): C538-C549.doi: 10.1152/ajpcell.00144.2023.Epub 2023 Jul 17.
|
| [43] |
Chen H, Zhang H, Li AM, et al. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats[J]. Redox Biol, 2024, 70: 103062.doi: 10.1016/j.redox.2024.103062.Epub 2024 Jan 26.
|
| [44] |
Wang Y, Song D, Tang L. Mitophagy, inflammasomes and their interaction in kidney diseases: A comprehensive review of experimental studies[J]. J Inflamm Res, 2023, 16: 1457-1469.doi: 10.2147/JIR.S402290.eCollection 2023.
pmid: 37042016
|
| [45] |
Chen K, Feng L, Hu W, et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy[J]. FASEB J, 2019, 33(3): 4571-4585.doi: 10.1096/fj.201801749RRR.Epub 2018 Dec 20.
pmid: 30571313
|
| [46] |
Bonventre JV. Can we target tubular damage to prevent renal function decline in diabetes?[J]. Semin Nephrol, 2012, 32(5): 452-462.doi: 10.1016/j.semnephrol.2012.07.008.
pmid: 23062986
|
| [47] |
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules[J]. Cell Death Dis, 2023, 14(7): 448.doi: 10.1038/s41419-023-05988-6.
|
| [48] |
Liu H, Zhen C, Xie J, et al. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA[J]. Nat Cell Biol, 2024, 26(6): 878-891.doi:doi: 10.1038/s41556-024-01419-6.Epub 2024 May 23.
|
| [49] |
Yao L, Liang X, Liu Y, et al. Non-steroidal mineralocorticoid receptor antagonist finerenone ameliorates mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in diabetic tubulopathy[J]. Redox Biol, 2023, 68: 102946.doi: 10.1016/j.redox.2023.102946.Epub 2023 Oct 24.
|
| [50] |
Xiao L, Xu X, Zhang F, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1[J]. Redox Biol, 2017, 11: 297-311.doi: 10.1016/j.redox.2016.12.022.Epub 2016 Dec 21.
pmid: 28033563
|