| [1] |
中华医学会风湿病学分会. 强直性脊柱炎诊断及治疗指南[J]. 中华风湿病学杂志2021, 14(8):557-559.
|
| [2] |
Li H, Guo Q, Zhou S, et al. Corrigendum to: An account on the history of pharmacology in Spain[J]. Pharmacol Res, 2024, 208:107365.doi: 10.1016/j.phrs.2024.107365.
|
| [3] |
Kim SH, Lee SH. Updates on ankylosing spondylitis: Pathogenesis and therapeutic agents[J]. J Rheum Dis, 2023, 30(4):220-233.doi: 10.4078/jrd.2023.0041.
|
| [4] |
Bilski R, Kamiński P, Kupczyk D, et al. Environmental and genetic determinants of ankylosing spondylitis[J]. Int J Mol Sci, 2024, 25(14):7814.doi: 10.3390/ijms25147814.
|
| [5] |
Chen CW, Wei JC, et al. Editorial: Advances in pathogenesis, etiology, and therapies for ankylosing spondylitis[J]. Front Immunol, 2021, 12:822582.doi: 10.3389/fimmu.2021.822582.
|
| [6] |
Xiong Y, Cai M, Xu Y, et al. Joint together: The etiology and pathogenesis of ankylosing spondylitis[J]. Front Immunol, 2022, 13:996103.doi: 10.3389/fimmu.2022.996103.
|
| [7] |
Wei Y, Zhang S, Shao F, et al. Ankylosing spondylitis: From pathogenesis to therapy[J]. Int Immunopharmacol, 2025, 145:113709.doi: 10.1016/j.intimp.2024.113709.
|
| [8] |
Chen B, Li J, He C, et al. Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (Review)[J]. Mol Med Rep, 2017, 15(4):1943-1951.doi: 10.3892/mmr.2017.6248.
pmid: 28259985
|
| [9] |
Khan MA. HLA-B*27 and ankylosing spondylitis: 50 years of insights and discoveries[J]. Curr Rheumatol Rep, 2023, 25(12):327-340.doi: 10.1007/s11926-023-01118-5.
pmid: 37950822
|
| [10] |
Pedersen SJ, Maksymowych WP. The pathogenesis of ankylosing spondylitis: An update[J]. Curr Rheumatol, 2019, 21(10):58.doi: 10.1007/s11926-019-0856-3.
|
| [11] |
Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis[J]. Mol Immunol, 2014, 57(1):44-51.doi: 10.1016/j.molimm.2013.07.013.
pmid: 23993278
|
| [12] |
Ranganathan V, Gracey E, Brown MA, et al. Pathogenesis of ankylosing spondylitis-recent advances and future directions[J]. Nat Rev Rheumatol, 2017, 13(6):359-367.doi: 10.1038/nrrheum.2017.56.
pmid: 28446810
|
| [13] |
Braun J, Sieper J. Fifty years after the discovery of the association of HLA B27 with ankylosing spondylitis[J]. RMD Open, 2023, 9(3):e003102.doi: 10.1136/rmdopen-2023-003102.
|
| [14] |
Mathew A, Bhagavaldas MC, Biswas R, et al. Genetic risk factors in ankylosing spondylitis: Insights into etiology and disease pathogenesis[J]. Int J Rheum Dis, 2023, 27(1): e15023-e15023.doi: 10.1111/1756-185X.15023.
|
| [15] |
Saad MA, Abdul-Sattar AB, Abdelal IT, et al. Shedding light on the role of ERAP1 in axial spondyloarthritis[J]. Cureus, 2023, 15(11):e48806.doi: 10.7759/cureus.48806.
|
| [16] |
Sharip A, Kunz J. Understanding the pathogenesis of spondyloarthritis[J]. Biomolecules, 2020, 10(10):1461.doi: 10.3390/biom10101461.
|
| [17] |
Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis[J]. Front Immunol, 2022, 13:1010572.doi: 10.3389/fimmu.2022.1010572.
|
| [18] |
Long F, Wang T, Li Q, et al. Association between Klebsiella pneumoniae and ankylosing spondylitis: A systematic review and meta-analysis[J]. Int J Rheum Dis, 2022, 25(4):422-432.doi: 10.1111/1756-185X.14283.
pmid: 35019225
|
| [19] |
Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis--insights into pathogenesis[J]. Nat Rev Rheumatol, 2016, 12(2):81-91.doi: 10.1038/nrrheum.2015.133.
pmid: 26439405
|
| [20] |
Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis[J]. Rheumatology (Oxford), 2018, 57(suppl_6):vi4-vi9.doi: 10.1093/rheumatology/key001.
|
| [21] |
Sumaiya K, Langford D, Natarajaseenivasan K, et al. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies[J]. Pharmacol Ther, 2022, 233:108024.doi: 10.1016/j.pharmthera.2021.108024.
|
| [22] |
谢小青, 刘亚贤, 王俊科. 巨噬细胞迁移抑制因子(MIF)在肿瘤免疫应答过程中的研究进展[J]. 细胞与分子免疫学杂志, 2024, 40(6): 561-565.doi: 10.13423/j.cnki.cjcmi.009725.
|
| [23] |
Song S, Xiao Z, Dekker FJ, et al. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury[J]. Cell Mol Life Sci, 2022, 79(2):105.doi: 10.1007/s00018-021-04038-8.
pmid: 35091838
|
| [24] |
Camacho Meza G, Avalos Navarro G, De La Cruz Mosso U, et al. Macrophage migration inhibitory factor: Exploring physiological roles and comparing health benefits against oncogenic and autoimmune risks (Review)[J]. Int J Mol Med, 2025, 56(4):149.doi: 10.3892/ijmm.2025.5590.
|
| [25] |
Kim KW, Kim HR. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis[J]. Korean J Intern Med, 2016, 31(4):634-642.doi: 10.3904/kjim.2016.098.
|
| [26] |
Santos LL, Morand EF. The role of macrophage migration inhibitory factor in the inflammatory immune response and rheumatoid arthritis[J]. Wien Med Wochenschr, 2006, 156(1-2):11-18.doi: 10.1007/s10354-005-0243-8.
pmid: 16465610
|
| [27] |
Ranganathan V, Ciccia F, Zeng F, et al. Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis[J]. Arthritis Rheumatol, 2017, 69(9):1796-1806.doi: 10.1002/art.40175.
|
| [28] |
Kozaci LD, Sari I, Alacacioglu A, et al. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: A role for macrophage migration inhibitory factor[J]. Mod Rheumatol, 2010, 20(1):34-39.doi: 10.1007/s10165-009-0230-9.
pmid: 19787418
|
| [29] |
Onuora S. Spondyloarthropathies: MIF drives inflammation and bone formation in AS[J]. Nat Rev Rheumatol, 2017, 13(8):451.doi: 10.1038/nrrheum.2017.91.
pmid: 28660909
|
| [30] |
Frangogiannis N. Transforming growth factor-β in tissue fibrosis[J]. J Exp Med, 2020, 217(3):e20190103.doi: 10.1084/jem.20190103.
|
| [31] |
Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease, and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1):61.doi: 10.1038/s41392-024-01764-w.
|
| [32] |
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β[J]. Bioorg Chem, 150:107611.doi: 10.1016/j.bioorg.2024.107611.
|
| [33] |
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: The master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6):325-338.doi: 10.1038/nrneph.2016.48.
|
| [34] |
王庆文, 曾沛英, 蔡月明, 等. 转化生长因子β1/结缔组织生长因子通路在强直性脊柱炎中的表达[J]. 北京大学学报(医学版), 2012, 44(2):244-249.doi:10.3969/j.issn.1671-167X.2012.02.018.
|
| [35] |
董莹莹. 血清IL-34、TGF-β1和TGF-β2水平对强直性脊柱炎的诊断价值[J]. 中国民康医学, 2022, 34(15):129-132.doi:10.3969/j.issn.1672-0369.2022.15.038.
|
| [36] |
许红飞, 初同伟, 张超, 等. 转化生长因子β1在强直性脊柱炎患者黄韧带和椎旁肌中的表达[J]. 中国免疫学杂志, 2013, 29(4):344-346.
|
| [37] |
沈健, 张雨涵, 曹芳蕾, 等. 强直性脊柱炎患者血清RANKL、TGF-β1和TGF-β2的表达及临床意义[J]. 陕西医学杂志, 2019, 48(8):981-983.doi:10.3969/j.issn.1000-7377.2019.08.005.
|
| [38] |
Peng D, Fu M, Wang M, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1):104.doi: 10.1186/s12943-022-01569-x.
pmid: 35461253
|
| [39] |
Ren LL, Li XJ, Duan TT, et al. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities[J]. Chem Biol Interact, 2023, 369:110289.doi: 10.1016/j.cbi.2022.110289.
|