临床荟萃 ›› 2025, Vol. 40 ›› Issue (10): 935-942.doi: 10.3969/j.issn.1004-583X.2025.10.010
收稿日期:2025-07-07
出版日期:2025-10-20
发布日期:2025-10-31
通讯作者:
耿中利
E-mail:gengzhongli0305@126.com
Received:2025-07-07
Online:2025-10-20
Published:2025-10-31
摘要:
分化型甲状腺癌(differentiated thyroid cancer,DTC)是甲状腺恶性肿瘤的主要类型,占95%以上。近年来,DTC全球发病率持续上升,且中国年龄标准化发病率在6年内增长速率超过2倍,年轻患者及儿童初诊时淋巴结转移率高达50%以上,凸显其侵袭性特征。DTC患者的淋巴结转移与复发风险及预后密切相关,但现有诊断体系仍面临诸多挑战:超声敏感度不足、分子标志物异质性及多中心数据缺乏限制临床转化。本文旨在整合多学科进展,揭示DTC淋巴结转移的多因素调控机制,为优化术前风险评估、手术策略及靶向治疗提供重要依据,以期改善患者无病生存期,推动DTC诊疗向“精准-个体化”模式转型。
中图分类号:
王保良, 耿中利. 分化型甲状腺癌淋巴结转移的影响因素:研究进展与临床挑战[J]. 临床荟萃, 2025, 40(10): 935-942.
| [1] | Sun Y, Zhao Y, Sun D, et al. Reflective analysis on the current (131)I adjuvant therapy indications in intermediate- and high-risk differentiated thyroid cancer[J]. Eur J Nucl Med Mol Imaging, 2025, 52(9):3125-3134. doi:10.1007/s00259-025-07153-x. |
| [2] |
Ming J, Zhu JQ, Zhang H, et al. A multicenter, prospective study to observe the initial management of patients with differentiated thyroid cancer in China (DTCC study)[J]. BMC Endocr Disord, 2021, 21(1): 208. doi:10.1186/s12902-021-00871-x.
pmid: 34670546 |
| [3] | Piticchio T, Russ G, Radzina M, et al. Head-to-head comparison of American, European, and Asian TIRADSs in thyroid nodule assessment: systematic review and meta-analysis[J]. Eur Thyroid J, 2024, 13(2):e230242. doi:10.1530/etj-23-0242. |
| [4] | Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. doi:10.1016/j.jncc.2024.01.006. |
| [5] | Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. doi:10.1016/j.jncc.2022.02.002. |
| [6] | Al-Ibraheem A, Al-Shammaa M, Abdlkadir AS, et al. Survival trends in pediatric differentiated thyroid cancer: A middle eastern perspective[J]. Life (Basel), 2024, 14(1):158. doi:10.3390/life14010158. |
| [7] |
Li J, Sun P, Huang T, et al. Preoperative prediction of central lymph node metastasis in cN0T1/T2 papillary thyroid carcinoma: A nomogram based on clinical and ultrasound characteristics[J]. Eur J Surg Oncol, 2022, 48(6): 1272-1279. doi:10.1016/j.ejso.2022.04.001.
pmid: 35414404 |
| [8] |
Alqahtani SM, Albalawi HI, Shehata SF, et al. Thyroid cancer and Hashimoto's thyroiditis in AUS/FLUS nodules: Is there a correlation? A retrospective study[J]. J Taibah Univ Med Sci, 2024, 19(6): 1157-1164. doi:10.1016/j.jtumed.2024.12.001.
pmid: 39802215 |
| [9] | Valizadeh P, Jannatdoust P, Ghadimi DJ, et al. Predicting lymph node metastasis in thyroid cancer: systematic review and meta-analysis on the CT/MRI-based radiomics and deep learning models[J]. Clin Imaging, 2025, 119: 110392. doi:10.1016/j.clinimag.2024.110392. |
| [10] | Li P, Liu Y, Wei T, et al. Effect and Interactions of BRAF on lymph node metastasis in papillary thyroid carcinoma with hashimoto thyroiditis[J]. J Clin Endocrinol Metab, 2024, 109(4): 944-954. doi:10.1210/clinem/dgad667. |
| [11] | Bharti J, Gogu P, Pandey SK, et al. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation[J]. Exp Cell Res, 2025, 446(1): 114440. doi:10.1016/j.yexcr.2025.114440. |
| [12] | Steinberg E, Dimitstein O, Morand GB, et al. Clinical and histopathological features of thyroid cancer with TERT promoter molecular alterations in isolation versus with concurrent molecular alterations: A multicenter retrospective study[J]. Cancers (Basel), 2024, 16(20):3446. doi:10.3390/cancers16203446. |
| [13] | Su X, Jiang X, Wang W, et al. Association of telomerase reverse transcriptase promoter mutations with clinicopathological features and prognosis of thyroid cancer: A meta-analysis[J]. Onco Targets Ther, 2016, 9: 6965-6976. doi:10.2147/ott.S116594. |
| [14] | Ricarte-Filho JC, Casado-Medrano V, Reichenberger E, et al. DICER1 RNase IIIb domain mutations trigger widespread miRNA dysregulation and MAPK activation in pediatric thyroid cancer[J]. Front Endocrinol (Lausanne), 2023, 14: 1083382. doi:10.3389/fendo.2023.1083382. |
| [15] | Luo Y, Jiang H, Xu W, et al. Clinical, pathological, and molecular characteristics correlating to the occurrence of radioiodine refractory differentiated thyroid carcinoma: A systematic review and meta-analysis[J]. Front Oncol, 2020, 10: 549882. doi:10.3389/fonc.2020.549882. |
| [16] | Lu H, Zhu C, Ruan Y, et al. hsa-miR-206b involves in the development of papillary thyroid carcinoma via targeting LMX1B[J]. Biomed Res Int, 2022, 2022: 7488708. doi:10.1155/2022/7488708. |
| [17] | Gu Y, Liu H, Shi M, et al. Mechanism of the microRNA-373-3p/LATS2 axis in the prognosis and metastasis of thyroid cancer patients[J]. J Biochem Mol Toxicol, 2025, 39(3): e70181. doi:10.1002/jbt.70181. |
| [18] | Verrienti A, Pecce V, Grani G, et al. Serum microRNA-146a-5p and microRNA-221-3p as potential clinical biomarkers for papillary thyroid carcinoma[J]. J Endocrinol Invest, 2025, 48(3): 619-631. doi:10.1007/s40618-024-02467-3. |
| [19] |
Li C, Zhao X, Zhao J, et al. BRAF regulates circPSD3/miR-526b/RAP2A axis to hinder papillary thyroid carcinoma progression[J]. BMC Mol Cell Biol, 2025, 26(1): 6. doi:10.1186/s12860-024-00528-2.
pmid: 39838328 |
| [20] | Ding Y, Li X, Wang W, et al. Integrative analysis of 5-methylcytosine associated signature in papillary thyroid cancer[J]. Sci Rep, 2025, 15(1): 4405. doi:10.1038/s41598-025-88657-2. |
| [21] | Gu X, Chen B, Zhang S, et al. The expression of CCL17 and potential prognostic value on tumor immunity in thyroid carcinoma based on bioinformatics analysis[J]. Sci Rep, 2024, 14(1): 31580. doi:10.1038/s41598-024-75750-1. |
| [22] | Ferrari SM, Fallahi P, Galdiero MR, et al. Immune and inflammatory cells in thyroid cancer microenvironment[J]. Int J Mol Sci, 2019, 20(18):4413. doi:10.3390/ijms20184413. |
| [23] | Xie Z, Li X, He Y, et al. Immune cell confrontation in the papillary thyroid carcinoma microenvironment[J]. Front Endocrinol (Lausanne), 2020, 11: 570604. doi:10.3389/fendo.2020.570604. |
| [24] | Nilsson JN, Siikanen J, Condello V, et al. Iodine avidity in papillary and poorly differentiated thyroid cancer is predicted by immunohistochemical and molecular work-up[J]. Eur Thyroid J, 2023, 12(4):e230099. doi:10.1530/etj-23-0099. |
| [25] |
Zhu X, Hu C, Zhang Z, et al. PD-L1 and B7-H3 are effective prognostic factors and potential therapeutic targets for high-risk thyroid cancer[J]. Endocr Pathol, 2024, 35(3): 230-244. doi:10.1007/s12022-024-09822-3.
pmid: 39102163 |
| [26] | Banerjee S, Nahar U, Dahiya D, et al. Role of cytotoxic T cells and PD-1 immune checkpoint pathway in papillary thyroid carcinoma[J]. Front Endocrinol (Lausanne), 2022, 13: 931647. doi:10.3389/fendo.2022.931647. |
| [27] | Shao Y, Gui X, Wang Y, et al. Serum soluble immune checkpoint levels predict cervical lymph node metastasis of differentiated thyroid carcinoma patients[J]. Cancer Med, 2023, 12(17): 17648-17659. doi:10.1002/cam4.6382. |
| [28] |
Hu Y, Xu Z, Zhou D, et al. CXCR4 promotes migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma by activating STAT3 signaling pathway[J]. J Cancer Res Ther, 2024, 20(4): 1241-1250. doi:10.4103/jcrt.jcrt_2395_22.
pmid: 39206986 |
| [29] | Li P, Zhang W, Wu Q, et al. Retinoid X receptor γ regulates epithelial-mesenchymal transition and tumor immune infiltration in papillary thyroid cancer tumorigenesis: An experimental and in silico study[J]. Endocr Connect, 2025, 14(6):e250015. doi:10.1530/ec-25-0015. |
| [30] | Zhao R, Tian J, Peng J, et al. The regulatory network of epithelial-mesenchymal transition-associated non-coding RNAs in thyroid cancer: Molecular mechanisms, clinical implications, and therapeutic strategies[J]. Front Oncol, 2025, 15: 1592467. doi:10.3389/fonc.2025.1592467. |
| [31] | Jiang W, Quan R, Bhandari A, et al. PAFAH1B3 regulates papillary thyroid carcinoma cell proliferation and metastasis by affecting the EMT[J]. Curr Med Chem, 2024, 31(9): 1152-1164. doi:10.2174/0929867330666230427102920. |
| [32] | Tian HY, Yu ZY, Dong T, et al. Risk factors of cervical central lymph node metastasis in stage T1a unifocal papillary thyroid carcinoma[J]. Sci Rep, 2024, 14(1): 25577. doi:10.1038/s41598-024-77681-3. |
| [33] | Chen Z, Sun W, Fei M, et al. Clinical and sonographic differences between RET fusion-positive and BRAFV600E in papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2025, 110(8):e2737-e2743. doi:10.1210/clinem/dgae803. |
| [34] |
Gao Y, Tian M, Hou X, et al. Multifocality increases the risk of central compartment lymph node metastasis but is not related to the risk of recurrence and death in papillary thyroid carcinoma[J]. Gland Surg, 2024, 13(12): 2383-2394. doi:10.21037/gs-2024-505.
pmid: 39822357 |
| [35] | Zhang Q, Xu S, Song Q, et al. Predicting central lymph node metastasis in papillary thyroid cancer: A nomogram based on clinical, ultrasound and contrast?enhanced computed tomography characteristics[J]. Oncol Lett, 2024, 28(4): 478. doi:10.3892/ol.2024.14611. |
| [36] | Liu XH, Yin HQ, Shen H, et al. A multivariable model of ultrasound and biochemical parameters for predicting high-volume lymph node metastases of papillary thyroid carcinoma with Hashimoto's thyroiditis[J]. Front Endocrinol (Lausanne), 2024, 15: 1501142. doi:10.3389/fendo.2024.1501142. |
| [37] | Gong J, Zhu B, Liu W, et al. Risk factors for lymph node metastasis in papillary thyroid carcinoma: A retrospective study[J]. Horm Metab Res, 2023, 55(5): 315-322. doi:10.1055/a-2057-8358. |
| [38] |
Liu C, Xiao C, Chen J, et al. Risk factor analysis for predicting cervical lymph node metastasis in papillary thyroid carcinoma: A study of 966 patients[J]. BMC Cancer, 2019, 19(1): 622. doi:10.1186/s12885-019-5835-6.
pmid: 31238891 |
| [39] | Ding Y, Zhou R. Distant lymph node metastasis in differentiated thyroid cancer: A population-based cohort study[J]. Surgeon, 2025, 23(1): 38-44. doi:10.1016/j.surge.2024.07.004. |
| [40] | Ren A, Zhu J, Wu Z, et al. Machine learning algorithms for identifying contralateral central lymph node metastasis in unilateral cN0 papillary thyroid cancer[J]. Front Endocrinol (Lausanne), 2024, 15: 1385324. doi:10.3389/fendo.2024.1385324. |
| [41] | Gong Z, Yang S, Wei M, et al. The isoforms of estrogen receptor alpha and beta in thyroid cancer[J]. Front Oncol, 2022, 12: 916804. doi:10.3389/fonc.2022.916804. |
| [42] |
Liu Y, Wang X, Sun X, et al. Nomogram for predicting the risk of cervical lymph node metastases and recurrence in papillary thyroid carcinoma based on the thyroid differentiation score system and clinical characteristics[J]. BMC Endocr Disord, 2025, 25(1): 39. doi:10.1186/s12902-025-01867-7.
pmid: 39939864 |
| [43] | Alshahrani A, Alshehri S, Ajwah I, et al. Clinicopathological characteristics of thyroid cancer: A 10-year experience at a tertiary care center in saudi arabia[J]. Cureus, 2024, 16(12): e76068. doi:10.7759/cureus.76068. |
| [44] | Gillis A, Chen H, Wang TS, et al. Racial and ethnic disparities in the diagnosis and treatment of thyroid disease[J]. J Clin Endocrinol Metab, 2024, 109(4): e1336-e1344. doi:10.1210/clinem/dgad519. |
| [45] | Jiwang L, Jinghui B, Fengqin F, et al. Comprehensive analysis of clinicopathologic and sonographic features in thyroid cancer with skip lymph node metastasis: establish and assessment of a prediction nomogram[J]. Braz J Otorhinolaryngol, 2023, 89(5): 101301. doi:10.1016/j.bjorl.2023.101301. |
| [46] | Yao X, Tang M, Lu M, et al. Interpretable machine learning models for predicting skip metastasis in cN0 papillary thyroid cancer based on clinicopathological and elastography radiomics features[J]. Front Oncol, 2024, 14: 1457660. doi:10.3389/fonc.2024.1457660. |
| [47] |
Wang W, Yang Z, Ouyang Q. A nomogram to predict skip metastasis in papillary thyroid cancer[J]. World J Surg Oncol, 2020, 18(1): 167. doi:10.1186/s12957-020-01948-y.
pmid: 32669128 |
| [48] | Weng HY, Yan T, Qiu WW, et al. The prognosis of skip metastasis in papillary thyroid microcarcinoma is better than that of continuous metastasis[J]. J Clin Endocrinol Metab, 2022, 107(6): 1589-1598. doi:10.1210/clinem/dgac107. |
| [49] |
Jing Y, Zhou J, Qi X, et al. Evaluating the efficacy of the endoscopic thyroidectomy via sternocleidomastoid muscle posteroinferior approach in identifying occult lateral cervical lymph node metastasis[J]. Gland Surg, 2024, 13(11): 1986-1995. doi:10.21037/gs-24-340.
pmid: 39678413 |
| [50] |
Lo CY. Lymph node dissection for papillary thyroid carcinoma[J]. Methods Mol Biol, 2022, 2534: 57-78. doi:10.1007/978-1-0716-2505-7_5.
pmid: 35670968 |
| [51] | Ryu YJ, Kwon SY, Lim SY, et al. Predictive factors for skip lymph node metastasis and their implication on recurrence in papillary thyroid carcinoma[J]. Biomedicines, 2022, 10(1):179. doi:10.3390/biomedicines10010179. |
| [52] | Zeng S, Liu Y, Duan X, et al. Artificial Intelligence in CT for predicting cervical lymph node metastasis in papillary thyroid cancer patients: A meta-analysis[J]. Acad Radiol, 2025, 32(5):2554-2568. doi:10.1016/j.acra.2025.02.007. |
| [53] | Ito Y, Miyauchi A. Prognostic factors of papillary and follicular carcinomas based on pre-, intra-, and post-operative findings[J]. Eur Thyroid J, 2024, 13(5):e240196. doi:10.1530/etj-24-0196. |
| [54] | Zou M, Qattan A, Al-Alwan M, et al. Genome-wide transcriptome analysis and drug target discovery reveal key genes and pathways in thyroid cancer metastasis[J]. Front Endocrinol (Lausanne), 2025, 16: 1514264. doi:10.3389/fendo.2025.1514264. |
| [55] |
Gao L, Wen X, Yue G, et al. The predictive value of a nomogram based on ultrasound radiomics, clinical factors, and enhanced ultrasound features for central lymph node metastasis in papillary thyroid microcarcinoma[J]. Ultrason Imaging, 2025, 47(2): 93-103. doi:10.1177/01617346251313982.
pmid: 39865963 |
| [56] | Fan F, Li F, Wang Y, et al. Integration of ultrasound-based radiomics with clinical features for predicting cervical lymph node metastasis in postoperative patients with differentiated thyroid carcinoma[J]. Endocrine, 2024, 84(3): 999-1012. doi:10.1007/s12020-023-03644-9. |
| [57] |
Roh YH, Chung SR, Baek JH, et al. Validation of CT-based risk stratification system for lymph node metastasis in patients with thyroid cancer[J]. Korean J Radiol, 2023, 24(10): 1028-1037. doi:10.3348/kjr.2023.0308.
pmid: 37793671 |
| [58] |
Lu J, Wu X, Wang W, et al. Conventional ultrasound combined with contrast-enhanced ultrasound predicts lateral lymph node metastasis in papillary thyroid carcinoma[J]. Clin Hemorheol Microcirc, 2025, 89(1): 83-94. doi:10.3233/ch-242217.
pmid: 39911119 |
| [59] | Appanraj P, Kaur J, George NA, et al. Role of ultrasound elastography in evaluating suspicious thyroid nodules[J]. Indian J Surg Oncol, 2024, 15(4): 646-651. doi:10.1007/s13193-024-01956-4. |
| [60] |
Zhao J, Li L M, Gao L, et al. Prediction model construction of cervical central lymph node metastasis in papillary thyroid carcinoma combined with Hashimoto's thyroiditis utilizing conventional ultrasound and elastography[J]. Gland Surg, 2024, 13(12): 2325-2334. doi:10.21037/gs-24-271.
pmid: 39822354 |
| [61] |
Agyekum EA, Wang YG, Xu FJ, et al. Predicting BRAFV600E mutations in papillary thyroid carcinoma using six machine learning algorithms based on ultrasound elastography[J]. Sci Rep, 2023, 13(1): 12604. doi:10.1038/s41598-023-39747-6.
pmid: 37537230 |
| [62] | Zhang XY, Zhang D, Zhou W, et al. Predicting lymph node metastasis in papillary thyroid carcinoma: Radiomics using two types of ultrasound elastography[J]. Cancer Imaging, 2025, 25(1): 13. doi:10.1186/s40644-025-00832-w. |
| [63] | Dou QY, Guo HL, Qiu WB, et al. Multimodal ultrasound: A non-invasive method for identifying dedifferentiation of papillary thyroid carcinoma during active surveillance[J]. Front Oncol, 2025, 15: 1545407. doi:10.3389/fonc.2025.1545407. |
| [64] |
Zaman MU, Fatima N. Role of PET/CT imaging thyroid cancers[J]. J Coll Physicians Surg Pak, 2025, 35(2): 139-140. doi:10.29271/jcpsp.2025.02.139.
pmid: 39936187 |
| [65] | Piccardo A, Bottoni G, Treglia G, et al. Enhanced staging of differentiated thyroid carcinoma: Integrating [(18)F]FDG digital PET/CT with neck ultrasound[J]. Eur J Nucl Med Mol Imaging, 2025, 52(8):2875-2886. doi:10.1007/s00259-025-07169-3. |
| [66] | Tabiti H, Gbadamassi AA, Bendahhou K, et al. Occurrence of Metastases in Differentiated Thyroid Carcinoma Patients: A retrospective study in morrocco covering 10 years of follow-up[J]. Cureus, 2025, 17(1): e78176. doi:10.7759/cureus.78176. |
| [67] | Diwanji D, Carrodeguas E, Seo Y, et al. Comparative uptake patterns of radioactive iodine and [18F]-fluorodeoxyglucose (FDG) in metastatic differentiated thyroid cancers[J]. J Clin Med, 2024, 13(13):3963. doi:10.3390/jcm13133963. |
| [68] | Grünig H, Strobel K, Zander A, et al. Significance of incidental thyroid 18F-fluorocholine uptake in patients with hyperparathyroidism imaged for localizing hyperfunctioning parathyroid glands[J]. Nucl Med Commun, 2024, 45(11): 938-946. doi:10.1097/mnm.0000000000001887. |
| [69] |
Piccardo A, Puntoni M, Dezzana M, et al. Indeterminate thyroid nodules. The role of (18)F-FDG PET/CT in the “era” of ultrasonography risk stratification systems and new thyroid cytology classifications[J]. Endocrine, 2020, 69(3): 553-561. doi:10.1007/s12020-020-02239-y.
pmid: 32124261 |
| [70] | Piccardo A, Fiz F, Righi S, et al. [18F]Tetrafluoroborate, a new NIS PET/CT radiopharmaceutical: an overview focused on differentiated thyroid cancer[J]. Eur Thyroid J, 2025, 14(1):e240320. doi:10.1530/etj-24-0320. |
| [1] | 李逍山, 尚攀峰. 肾结核的多模态融合诊断[J]. 临床荟萃, 2025, 40(8): 758-763. |
| [2] | 陈哲宇, 何倩倩, 郭小冬, 王环环, 杨艳丽, 阿赛古丽. 以皮肤多发转移灶为首发表现的肺小细胞癌:1例罕见病例报道[J]. 临床荟萃, 2025, 40(1): 65-69. |
| [3] | 叶丹, 章佳波, 姚玲莉, 郭宇. CyclinD1、p27表达与甲状腺微小乳头状癌中央区淋巴结转移超声特征的关系[J]. 临床荟萃, 2021, 36(3): 262-265. |
| [4] | 唐志金, 沈华, 于海文. 血清Cla-1、MK和Gal-1水平诊断桥本甲状腺炎合并乳头状甲状腺癌的临床价值[J]. 临床荟萃, 2020, 35(3): 255-259. |
| [5] | 杜鹃. 超声检查对甲状腺微小乳头状癌诊断价值的探讨[J]. 临床荟萃, 2019, 34(4): 343-346. |
| [6] | 廖海鹰,朱佩玲,张凯丽,胡志刚. 甲状腺疾病的诊治现状及进展[J]. 临床荟萃, 2016, 31(3): 282-285. |
| [7] | 余倩;李小林;乔虹. 半乳糖血凝素3在乳头状甲状腺癌中的研究进展[J]. 临床荟萃, 2014, 29(12): 1435-1437. |
| [8] | 焦传东;张雪辉. 甲状腺微小乳头状癌中央区淋巴结转移的高危因素分析[J]. 临床荟萃, 2013, 28(6): 672-674. |
| [9] | 唐光敏. 以腹泻首发甲状腺髓样癌伴异位促肾上腺皮质激素综合征1例[J]. 临床荟萃, 2013, 28(4): 449-450. |
| [10] | 黄盈瑞;周玲玲;戈月平;梁勇. 浙江省台州市椒江区2008~2012年甲状腺癌发病情况分析[J]. 临床荟萃, 2013, 28(11): 1210-1212. |
| [11] | 薛帅;刘嘉;陈光. 中国甲状腺癌患者PTEN蛋白表达及其意义的Meta分析[J]. 临床荟萃, 2012, 27(23): 2036-2.0382e+007. |
| [12] | 王芳. 细针穿刺细胞学在甲状腺乳头状癌术前诊断中的应用[J]. 临床荟萃, 2012, 27(11): 977-0. |
| [13] | 严丽;李清怀;李莉. 桥本甲状腺炎合并甲状腺癌28例临床分析[J]. 临床荟萃, 2012, 27(11): 955-956. |
| [14] | 严丽;李莉;李清怀. 结节性甲状腺肿并发甲状腺癌的临床分析[J]. 临床荟萃, 2012, 27(10): 881-883. |
| [15] | 赵美丽;范红;杨炜;周云. 从甲状腺癌患者的临床资料探讨早期发现甲状腺癌的方法[J]. 临床荟萃, 2011, 26(21): 1885-1887. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
